Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(37): 44549-44555, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34499465

ABSTRACT

A microsecond time-scale photonic lift-off (PLO) process was used to fabricate mechanically flexible photovoltaic devices (PVs) with a total thickness of less than 20 µm. PLO is a rapid, scalable photothermal technique for processing extremely thin, mechanically flexible electronic and optoelectronic devices. PLO is also compatible with large-area devices, roll-to-roll processing, and substrates with low temperature compatibility. As a proof of concept, PVs were fabricated using CuInSe2 nanocrystal ink deposited at room temperature under ambient conditions on thin, plastic substrates heated to 100 °C. It was necessary to prevent cracking of the brittle top contact layer of indium tin oxide (ITO) during lift-off, either by using a layer of silver nanowires (AgNW) as the top contact or by infusing the ITO layer with AgNW. This approach could generally be used to improve the mechanical versatility of current collectors in a variety of ultrathin electronic and optoelectronic devices requiring a transparent conductive contact layer.

2.
ACS Omega ; 6(27): 17323-17334, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34278118

ABSTRACT

In this study, photonic curing is used to rapidly and effectively convert metal-oxide sol-gels to realize high-quality thin-film transistors (TFTs). Photonic curing offers advantages over conventional thermal processing methods such as ultrashort processing time and compatibility with low-temperature substrates. However, previous work on photonically cured TFTs often results in significant heating of the entire substrate rather than just the thin film at the surface. Here, sol-gel indium zinc oxide (IZO)-based TFTs are photonically cured with efficient gate absorbers requiring as few as five pulses using intense white light delivering radiant energy up to 6 J cm-2. Simulations indicate that the IZO film reaches a peak temperature of ∼590 °C while the back of the substrate stays below 30 °C. The requirements and design guidelines for photonic curing metal-oxide semiconductors for high-performance TFT applications are discussed, focusing on the importance of effective gate absorbers and optimized pulse designs to efficiently and effectively cure sol-gel films. This process yields TFTs with a field-effect mobility of 21.8 cm2 V-1 s-1 and an I on/I off ratio approaching 108, which exceeds the performance of samples annealed at 500 °C for 1 h. This is the best performance and highest metal-oxide conversion for photonically cured oxide TFTs achieved to date that does not significantly heat the entire thickness of the substrate. Importantly, the conversion from sol-gel precursors to the semiconducting metal-oxide phase during photonic curing is on par with thermal annealing, which is a significant improvement over previous pulsed-light processing work. The use of efficient gate absorbers also allows for the reduction in the number of pulses and efficient sol-gel conversion.

3.
Sci Rep ; 11(1): 3393, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33564062

ABSTRACT

Photonic curing has shown great promise in maintaining the integrity of flexible thin polymer substrates without structural degradation due to shrinkage, charring or decomposition during the sintering of printed functional ink films in milliseconds at high temperatures. In this paper, single-step photonic curing of screen-printed nickel (Ni) electrodes is reported for sensor, interconnector and printed electronics applications. Solid bleached sulphate paperboard (SBS) and polyethylene terephthalate polymer (PET) substrates are employed to investigate the electrical performance, ink transfer and ink spreading that directly affect the fabrication of homogeneous ink films. Ni flake ink is selected, particularly since its effects on sintering and rheology have not yet been examined. The viscosity of Ni flake ink yields shear-thinning behavior that is distinct from that of screen printing. The porous SBS substrate is allowed approximately 20% less ink usage. With one-step photonic curing, the electrodes on SBS and PET exhibited electrical performances of a minimum of 4 Ω/sq and 16 Ω/sq, respectively, at a pulse length of 1.6 ms, which is comparable to conventional thermal heating at 130 °C for 5 min. The results emphasize the suitability of Ni flake ink to fabricate electronic devices on flexible substrates by photonic curing.

4.
Nanoscale Adv ; 1(6): 2311-2322, 2019 Jun 11.
Article in English | MEDLINE | ID: mdl-36131982

ABSTRACT

A novel functionalized multi-walled carbon nanotube (FMWCNT)/hydroxyethyl cellulose (HEC) composite-based humidity sensor was successfully developed for humidity monitoring applications. FMWCNTs were synthesized by covalently functionalizing multi-walled carbon nanotubes (MWCNTs) in a mixture of sulfuric and nitric acid to enhance their hydrophilicity. The FMWCNTs were characterized using transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and dispersion analysis to verify the presence of functional hydroxyl and carboxyl groups. A FMWCNT/HEC (1 : 6 w/w) composite ink was formulated using the solution blending technique with 2.5 wt% FMWCNTs. A multi-layered humidity sensor was fabricated using additive print manufacturing processes on a flexible polyethylene terephthalate (PET) substrate. Screen printing and gravure printing processes were used to deposit the bottom silver (Ag) electrode and FWMCNT/HEC sensing layers, respectively. The capability of the fabricated humidity sensor was investigated by measuring its resistive response towards relative humidity (RH) varying from 20% RH to 80% RH. As the RH was increased from 20% RH to 80% RH in steps of 10% RH at 25 °C, it was observed that the resistance of the printed sensor increased linearly. The printed sensor demonstrated resistance changes as high as ≈290% at 80% RH, when compared to its base resistance at 20% RH. A sensitivity and a response time of 0.048/%RH and ≈20 s were obtained for the printed sensor, respectively. The results thus demonstrated the feasibility of employing additive print manufacturing processes to develop a highly sensitive sensor for humidity monitoring applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...