Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 344: 316-321, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29078184

ABSTRACT

This study represents the electrooxidation of anti-cancer drug carboplatin (CrbPt) with different mixed metal oxide (MMO) and boron doped diamond (BDD) electrodes. The most effective anode was found as Ti/RuO2 with the complete degradation of CrbPt in just 5min. The effect of applied current density, pH and electrolyte concentration on CrbPt degradation has been studied. The degradation of CrbPt significantly increased at the initial stages of the process with increasing current density. However, further increase in current density did not affect the degradation rate. While complete degradation of CrbPt was provided at pH 7, the degradation rates were 49% and 75% at pH 9 and 4, respectively. Besides, increasing supporting electrolyte (Na2SO4) concentration provided higher degradation rate but further increase in Na2SO4 concentration did not provide higher degradation rate due to excess amount of SO4-2. According to the DFT calculations, the formation of [Pt(NH3)2 (H2O)2]2+ and [Pt(NH3)2 (OH)2] takes place with molecular weights of 265 and 263gmol-1, respectively. Toxicity of treated samples at BDD and Ti/RuO2 electrodes has been also evaluated in this study. The results showed that Ti/RuO2 anode provided zero toxicity at the end of the process.

2.
Water Sci Technol ; 73(7): 1673-9, 2016.
Article in English | MEDLINE | ID: mdl-27054740

ABSTRACT

In this study, response surface methodology (RSM) was used to investigate the effects of different operating conditions on the removal of ciprofloxacin (CIP) by the electrocoagulation (EC) with pure iron electrodes. Box-Behnken design was used for the optimization of the EC process and to evaluate the effects and interactions of process variables such as applied current density, process time, initial CIP concentration and pH on the removal of CIP by the EC process. The optimum conditions for maximum CIP removal (86.6%) were found as pH = 4; Co = 5 mg.L(1-); Id = 4.325 mA.cm(2-); tprocess = 10 min. The model adequacy and the validity of the optimization step were confirmed with additional experiments which were performed under the proposed optimum conditions. The predicted CIP removal as 86.6% was achieved at each experiment by using the optimum conditions. These results specify that the RSM is a useful tool for optimizing the operational conditions for CIP removal by the EC process.


Subject(s)
Anti-Bacterial Agents/chemistry , Ciprofloxacin/chemistry , Electrochemical Techniques/methods , Water Pollutants, Chemical/chemistry , Chemical Precipitation , Electrodes , Models, Theoretical , Surface Properties
3.
Environ Sci Pollut Res Int ; 22(1): 202-10, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25056748

ABSTRACT

The efficiency of TiO2 as a catalyst in the ozonation of humic acid (HA) was evaluated in a comprehensive manner. Ozonation, catalytic ozonation and adsorption experiments were conducted using both synthetic HA solution and natural water. HA degradation was evaluated in terms of DOC, VIS400 and UV254. It was shown that the addition of catalyst positively affects the mechanism of ozonation. An increase in HA degradation was observed for all these parameters. The impact of catalyst dose and initial pH value of HA on the efficacy of catalytic ozonation was investigated. The highest removal efficiencies were achieved with the dose of 1 g l(-1) of TiO2 (Degussa P-25) and in the acidic pH region. The catalytic ozonation process was efficient also on natural water component although not at the same level as it was on synthetic water. The adsorptive feature of P-25 was considered to have a clear evidence of the catalytic ozonation mechanism. The mechanism of catalysis on the surface of metal oxides was elucidated with the help of quantum-chemical calculations. In the framework of Density Function Theory (DFT), the O3 decomposition was calculated in the catalytic and non-catalytic processes. Donor-acceptor properties of the frontier (highest occupied and lowest unoccupied molecular orbitals, HOMO/LUMO) orbitals are discussed. Electron density distribution and reaction mechanism of superoxide particles formation, which participate in the process of HA ozonation are analyzed.


Subject(s)
Humic Substances/analysis , Models, Chemical , Ozone/chemistry , Titanium/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Catalysis , Fresh Water/chemistry , Hydrogen-Ion Concentration , Nanoparticles/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...