Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 10: 1286633, 2023.
Article in English | MEDLINE | ID: mdl-38115880

ABSTRACT

Introduction: The consumption of soft and energy drinks poses a significant risk for non-communicable diseases, such as diabetes and heart disease. Studies in Saudi Arabia have reported elevated consumption of soft/energy drinks, but nation-wide data is not available. Therefore, this study aims to explore the prevalence of soft and energy drinks consumption and its associated factors among a representative sample of Saudi adults. Methods: The present research is a secondary data analysis of the 2021 Sharik Diet and Health National Survey (SDHNS). Current analysis used data on socio-demographics, anthropometrics, physical activity, and soft and energy drink consumption. The frequency of soft and energy drinks consumption is assessed on a weekly basis. Results: Of the 5,194 Saudi adults, 3,928 were analyzed. Overall, 67% consumed soft drinks weekly, while 30% consumed energy drinks weekly. In multiple logistic regression, consumption of either soft drinks or energy drinks was associated with males, a younger age, lower income, and lower physical activity. Individuals with overweight or obesity were less likely to consume energy drinks [OR (95%CI): 0.83 (0.71, 0.99) and 0.73 (0.60, 0.90), respectively] than those with healthy weight. However, education level was not associated with either soft or energy drink consumption. These findings highlight the need for targeted interventions designed to reduce soft and energy drinks consumption in Saudi adults.

2.
Mol Genet Metab Rep ; 34: 100955, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36632325

ABSTRACT

Background: Glycogen storage disease type Ib (GSD Ib) is an autosomal recessively inherited deficiency of the glucose-6-phosphate translocase (G6PT). Clinical features include a combination of a metabolic phenotype (fasting hypoglycemia, lactic acidosis, hepatomegaly) and a hematologic phenotype with neutropenia and neutrophil dysfunction. Dietary treatment involves provision of starches such as uncooked cornstarch (UCCS) and Glycosade® to provide prolonged enteral supply of glucose. Granulocyte colony-stimulating factor (G-CSF) is the treatment of choice for neutropenia. Because long-term stimulation of hematopoiesis with G-CSF causes serious complications such as splenomegaly, hypersplenism, and osteopenia; hematopoietic stem cell transplantation (HSCT) has been considered in some patients with GSD Ib to correct neutropenia and avoid G-CSF related adverse effects. Whether HSCT also has an effect on the metabolic phenotype and utilization of carbohydrate sources has not been determined. Objective: Our objective was to measure the utilization of starch in a patient with GSD Ib before and after HSCT using the minimally invasive 13C-glucose breath test (13C-GBT). Design: A case of GSD Ib (18y; female) underwent 13C-GBT four times: UCCS (pre-HSCT), UCCS (3, 5 months post-HSCT) and Glycosade® (6 months post-HSCT) with a dose of 80 g administered via nasogastric tube after a 4 h fast according to our patient's fasting tolerance. Breath samples were collected at baseline and every 30 min for 240 min. Rate of CO2 production was measured at 120 min using indirect calorimetry. Finger-prick blood glucose was measured using a glucometer hourly to test hypoglycemia (glucose <4 mmol/L). Biochemical and clinical data were obtained from the medical records as a post-hoc chart review. Results: UCCS utilization was significantly higher in GSD Ib pre-HSCT, which reduced and stabilized 5 months post-HSCT. UCCS and Glycosade® utilizations were low and not different at 5 and 6 months post-HSCT. Blood glucose concentrations were not significantly different at any time point. Conclusions: Findings show that HSCT stabilized UCCS utilization, as reflected by lower and stable glucose oxidation. The results also illustrate the application of 13C-GBT to examine glucose metabolism in response to various carbohydrate sources after other treatment modalities like HSCT in GSD Ib.

3.
Mol Genet Metab Rep ; 31: 100880, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35585965

ABSTRACT

Background: Glycogen storage disease type Ia (GSD Ia) is an autosomal recessive disorder caused by deficiency of glucose-6-phosphatase (G6Pase), resulting in fasting hypoglycemia. Dietary treatment with provision of uncooked cornstarch (UCCS) or a novel modified cornstarch (Glycosade®) is available to treat hypoglycemia, yet choice of carbohydrate to achieve a desirable glycemic control is debated.13C-glucose breath test (13C-GBT) can be used to examine glucose metabolism from different carbohydrate sources via 13CO2 in breath. Objectives: Our objectives were: 1) establishing the use of a minimally invasive 13C-GBT to examine in vivo glucose metabolism in healthy adults, and 2) using 13C-GBT to measure utilization of the standard UCCS vs. Glycosade® in GSD Ia and healthy controls. Design: Experiment 1- Ten healthy adults (6F: 4 M, 22-33y) underwent 13C-GBT protocol twice as a proof-of-principle, once with oral isotope dose (glucose 75 g + [U-13C6] d-glucose 75 mg) and once without isotope (only glucose 75 g) to test sensitivity of natural 13C-enrichment. Breath samples were collected at baseline and every 20 min for 240 min. Rate of CO2 production was measured at 120 min using indirect calorimetry. Finger-prick blood glucose was measured using a glucometer hourly to test hypoglycemia (glucose <4 mmol/L). Experiment 2- Three GSD Ia (12y, 13y, and 28y) and six healthy controls (2F: 4 M, 10-32y) underwent 13C-GBT protocol twice: with UCCS or Glycosade® (based on their current prescribed dose 42-100 g) after ~4 h fast based on our GSD Ia patients with fasting tolerance. Results: Findings 1- Maximum 13C-enrichments occurred at 200 min without and with [U-13C6] d-glucose in all healthy adults, suggesting natural enrichment is sensitive for the 13C-GBT. Findings 2- Glycosade® utilization was lower than UCCS utilization in 12y and 13y GSD Ia, but was similar in the 28y GSD Ia. Conclusions: 13C-GBT is a novel minimally invasive functional test to examine glucose metabolism in GSD Ia, and test new products like Glycosade®, which has the potential to improve nutritional management and individualized carbohydrate supply in GSD.

4.
J Nutr ; 147(2): 211-217, 2017 02.
Article in English | MEDLINE | ID: mdl-28053173

ABSTRACT

BACKGROUND: Phenylketonuria is characterized by mutations in the Phe hydroxylase gene that leads to the accumulation of Phe in plasma and the brain. The standard of care for phenylketonuria is nutritional management with dietary restriction of Phe and the provision of sufficient protein and energy for growth and health maintenance. The protein requirement in children with phenylketonuria is empirically determined based upon phenylketonuria nutritional guidelines that are adjusted individually in response to biochemical markers and growth. OBJECTIVE: We determined dietary protein requirements in children with phenylketonuria with the use of the indicator amino acid oxidation (IAAO) technique, with l-[1-13C]Leu as the indicator amino acid. METHODS: Four children (2 males; 2 females) aged 9-18 y with phenylketonuria [mild hyperphenylalanemia (mHPA); 6-10 mg/dL (360-600 µmol/L)] were recruited to participate in ≥7 separate test protein intakes (range: 0.2-3.2 g ⋅ kg-1 ⋅ d-1) with the IAAO protocol with the use of l-[1-13C]Leu followed by the collection of breath and urine samples over 8 h. The diets were isocaloric and provided energy at 1.7 times the resting energy expenditure. Protein was provided as a crystalline amino acid mixture based on an egg protein pattern, except Phe and Leu, which were maintained at a constant across intakes. Protein requirement was determined with the use of a 2-phase linear-regression crossover analysis of the rate of l-[1-13C]Leu tracer oxidation. RESULTS: The mean protein requirement was determined to be 1.85 g ⋅ kg-1 ⋅ d-1 (R2 = 0.66; 95% CI: 1.37, 2.33). This result is substantially higher than the 2014 phenylketonuria recommendations (1.14-1.33 g ⋅ kg-1 ⋅ d-1; based on 120-140% above the current RDA for age). CONCLUSIONS: To our knowledge, this is the first study to directly define a quantitative requirement for protein intake in children with mHPA and indicates that current protein recommendations in children with phenylketonuria may be insufficient. This trial was registered at clinicaltrials.gov as NCT01965691.


Subject(s)
Amino Acids/metabolism , Dietary Proteins , Leucine/metabolism , Nutritional Requirements , Phenylketonurias/metabolism , Adolescent , Carbon Isotopes , Child , Female , Humans , Isotope Labeling , Leucine/chemistry , Male , Nutritional Physiological Phenomena , Oxidation-Reduction
5.
Amino Acids ; 48(7): 1707-16, 2016 07.
Article in English | MEDLINE | ID: mdl-27138628

ABSTRACT

Leucine, a branched-chain amino acid (BCAA), has been shown to stimulate muscle protein synthesis, and thus has been proposed to prevent age-related muscle atrophy (sarcopenia). Therefore, leucine supplementation may have potential benefits in elderly populations to preserve muscle mass. The tolerable upper intake level (UL) for leucine intake in young men has recently been determined to be 500 mg kg(-1) day(-1), and increases in blood ammonia concentrations were seen at intake levels above 500 mg kg(-1) day(-1); the UL for leucine in elderly is unknown. The objective of the current study was to determine the safety of leucine supplementation in healthy elderly men. Six healthy elderly men (72.2 ± 3.5 years) received graded stepwise increases in leucine intakes ranging from 50 to 750 mg kg(-1) day(-1), on eight separate study days. Plasma and urinary biochemical variables, including blood ammonia, and an oral primed-continuous protocol of L-1-(13)C-Leucine was performed. Blood ammonia concentrations above normal values (35 µmol/L) were observed at leucine intakes >550 mg kg(-1) day(-1). Leucine oxidation measured as a F(13)CO2 (rate of label tracer oxidation) increased with increasing leucine intakes and started to plateau after 450 mg kg(-1) day(-1). Two-phased linear regression analysis of the F(13)CO2 data revealed a breakpoint of 431 mg kg(-1) day(-1) (R (2) = 0.73), suggesting that the upper limit to oxidize leucine was reached at that point. Taking the data together the upper limit for leucine intake in healthy elderly could be set similar to young men at 500 mg kg(-1) day(-1) or ~35 g/day for an individual weighing 70 kg.


Subject(s)
Ammonia , Dietary Supplements , Leucine , Muscle, Skeletal/metabolism , Aged , Ammonia/blood , Ammonia/urine , Humans , Leucine/administration & dosage , Leucine/adverse effects , Leucine/pharmacokinetics , Male
6.
Mol Genet Metab ; 115(2-3): 78-83, 2015.
Article in English | MEDLINE | ID: mdl-25943030

ABSTRACT

BACKGROUND: Phenylketonuria (PKU) is an autosomal recessive disorder caused by deficiency of hepatic phenylalanine hydroxylase (PAH) leading to increased levels of phenylalanine in the plasma. Phenylalanine levels and phenylalanine hydroxylase (PAH) activity monitoring are currently limited to conventional blood dot testing. 1-(13)C-phenylalanine, a stable isotope can be used to examine phenylalanine metabolism, as the conversion of phenylalanine to tyrosine occurs in vivo via PAH and subsequently releases the carboxyl labeled (13)C as (13)CO2 in breath. OBJECTIVE: Our objective was to examine phenylalanine metabolism in children with PKU using a minimally-invasive 1-(13)C-phenylalanine breath test ((13)C-PBT). DESIGN: Nine children (7 M: 2 F, mean age 12.5 ± 2.87 y) with PKU participated in the study twice: once before and once after sapropterin supplementation. Children were provided 6 mg/kg oral dose of 1-(13)C-phenylalanine and breath samples were collected at 20 min intervals for a period of 2h. Rate of CO2 production was measured at 60 min post-oral dose using indirect calorimetry. The percentage of 1-(13)C-phenylalanine exhaled as (13)CO2 was measured over a 2h period. Prior to studying children with PKU, we tested the study protocol in healthy children (n = 6; 4M: 2F, mean age 10.2 ± 2.48 y) as proof of principle. RESULTS: Production of a peak enrichment (Cmax) of (13)CO2 (% of dose) in all healthy children occurred at 20 min ranging from 17-29% of dose, with a subsequent return to ~5% by the end of 2h. Production of (13)CO2 from 1-(13)C-phenylalanine in all children with PKU prior to sapropterin treatment remained low. Following sapropterin supplementation for a week, production of (13)CO2 significantly increased in five children with a subsequent decline in blood phenylalanine levels, suggesting improved PAH activity. Sapropterin treatment was not effective in three children whose (13)CO2 production remained unchanged, and did not show a reduction in blood phenylalanine levels and improvement in dietary phenylalanine tolerance. CONCLUSIONS: Our study shows that the (13)C-PBT can be a minimally invasive, safe and reliable measure to examine phenylalanine metabolism in children with phenylketonuria. The breath data are corroborated by blood phenylalanine levels in children who had increased responses in (13)CO2 production, as reviewed post-hoc from clinical charts.


Subject(s)
Breath Tests/methods , Phenylalanine/metabolism , Phenylketonurias/metabolism , Adolescent , Biopterins/analogs & derivatives , Biopterins/therapeutic use , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Carbon Isotopes/chemistry , Carbon Isotopes/metabolism , Child , Female , Humans , Liver/metabolism , Male , Molecular Chaperones/therapeutic use , Phenylalanine/chemistry , Phenylalanine Hydroxylase/chemistry , Phenylalanine Hydroxylase/metabolism , Phenylketonurias/drug therapy , Phenylketonurias/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...