Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Entomol ; 53(1): 188-98, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26576934

ABSTRACT

of mosquito vector populations, particularly through Wolbachia endosymbionts. The success of these strategies depends on understanding the dynamics of vector populations. In preparation for Wolbachia releases around Yogyakarta, we have studied Aedes populations in five hamlets. Adult monitoring with BioGent- Sentinel (BG-S) traps indicated that hamlet populations had different dynamics across the year; while there was an increase in Aedes aegypti (L.) and Aedes albopictus (Skuse) numbers in the wet season, species abundance remained relatively stable in some hamlets but changed markedly (>2 fold) in others. Local rainfall a month prior to monitoring partly predicted numbers of Ae. aegypti but not Ae. albopictus. Site differences in population size indicated by BG-S traps were also evident in ovitrap data. Egg or larval collections with ovitraps repeated at the same location suggested spatial autocorrelation (<250 m) in the areas of the hamlets where Ae. aegypti numbers were high. Overall, there was a weak negative association (r<0.43) between Ae. aegypti and Ae. albopictus numbers in ovitraps when averaged across collections. Ae. albopictus numbers in ovitraps and BG-S traps were positively correlated with vegetation around areas where traps were placed, while Ae. aegypti were negatively correlated with this feature. These data inform intervention strategies by defining periods when mosquito densities are high, highlighting the importance of local site characteristics on populations, and suggesting relatively weak interactions between Ae. aegypti and Ae. albopictus. They also indicate local areas within hamlets where consistently high mosquito densities may influence Wolbachia invasions and other interventions.


Subject(s)
Aedes , Animals , Indonesia , Pest Control, Biological , Population Density , Population Dynamics , Wolbachia
2.
Med Vet Entomol ; 28(4): 457-60, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24797695

ABSTRACT

The insect endosymbiont Wolbachia pipientis (Rickettsiales: Rickettsiaceae) is undergoing field trials around the world to determine if it can reduce transmission of dengue virus from the mosquito Stegomyia aegypti to humans. Two different Wolbachia strains have been released to date. The primary effect of the wMel strain is pathogen protection whereby infection with the symbiont limits replication of dengue virus inside the mosquito. A second strain, wMelPop, induces pathogen protection, reduces the adult mosquito lifespan and decreases blood feeding success in mosquitoes after 15 days of age. Here we test whether Wolbachia infection affects mosquito attraction to host odours in adults aged 5 and 15 days. We found no evidence of reduced odour attraction of mosquitoes, even for those infected with the more virulent wMelPop. This bodes well for fitness and competitiveness in the field given that the mosquitoes must find hosts to reproduce for the biocontrol method to succeed.


Subject(s)
Aedes/microbiology , Feeding Behavior/physiology , Odorants , Wolbachia/isolation & purification , Aging , Animals , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...