Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Eur J Med Chem ; 95: 526-45, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25847770

ABSTRACT

Wnt signaling pathway plays a critical role in numerous cellular processes, including tumor initiation, proliferation, invasion/infiltration, metastasis formation and resistance to chemotherapy. In a drug discovery project aimed at the identification of inhibitors of the canonical Wnt pathway, we selected a series of quinazoline 2,4-diones as starting point for the therapeutic treatment of glioblastoma multiforme. Despite of poor physico-chemical properties of hit compound 1, our medicinal chemistry effort allowed the discovery and characterization of lead compound 33 (SEN461), with improved ADME profile, good bioavailability and active in vitro and in vivo in glioblastoma, gastric and sarcoma tumors.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Quinazolines/chemistry , Quinazolines/pharmacology , Wnt Signaling Pathway/drug effects , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Inhibitory Concentration 50 , Male , Mice , Quinazolines/metabolism , Quinazolines/pharmacokinetics , Structure-Activity Relationship , Xenograft Model Antitumor Assays
2.
Eur J Med Chem ; 78: 401-18, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24704613

ABSTRACT

α7 nicotinic acetylcholine receptor agonists are promising therapeutic candidates for the treatment of cognitive impairment. As a follow up of our internal medicinal chemistry program we investigated a novel series of α7 nAChR agonists. Starting from molecular docking studies on two series of molecules recently developed in our laboratories, an alternative scaffold was designed attempting to combine the optimal features of these previously identified urea and pyrazole compounds. Based on our previous SAR knowledge and on predicted drug-like properties, a small library was synthesized in parallel manner, affording compounds with excellent α7 nAChR activity, selectivity and preliminary ADME profile.


Subject(s)
Drug Design , Pyrazoles/pharmacology , Urea/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/agonists , Animals , Cell Membrane Permeability/drug effects , Dogs , Dose-Response Relationship, Drug , Humans , Male , Models, Molecular , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Rats , Rats, Wistar , Structure-Activity Relationship , Urea/analogs & derivatives , Urea/chemical synthesis
3.
J Med Chem ; 55(22): 10277-81, 2012 Nov 26.
Article in English | MEDLINE | ID: mdl-23083093

ABSTRACT

α7 Nicotinic acetylcholine receptors (α7 nAChR) represent promising therapeutic candidates for the treatment of cognitive impairment associated with Alzheimer's disease (AD) and schizophrenia. A medicinal chemistry effort around previously reported compound 1 (SEN15924, WAY-361789) led to the identification of 12 (SEN78702, WYE-308775) a potent and selective full agonist of the α7 nAChR that demonstrated improved plasma stability, brain levels, and efficacy in behavioral cognition models.


Subject(s)
Brain/drug effects , Cognition/drug effects , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Nicotinic Agonists/pharmacology , Piperidines/pharmacology , Pyrazoles/pharmacology , Receptors, Nicotinic/chemistry , Animals , CHO Cells , Calcium/metabolism , Chemistry, Pharmaceutical , Cricetinae , ERG1 Potassium Channel , Humans , Models, Molecular , Nicotinic Agonists/chemical synthesis , Piperidines/chemical synthesis , Pyrazoles/chemical synthesis , Rats , Receptors, Nicotinic/metabolism , Structure-Activity Relationship , alpha7 Nicotinic Acetylcholine Receptor
4.
Front Psychiatry ; 3: 47, 2012.
Article in English | MEDLINE | ID: mdl-22593745

ABSTRACT

Interendothelial cell tight junctions (TJs) proteins contribute to maintain the structural and functional integrity of the blood-brain barrier (BBB) and several efflux transporters regulate transport of compounds across BBB. A unique double compartment-model of the BBB, consisting of cerebral endothelial cells isolated from cryopreserved human glial tumors, alone and in the presence of human astroglial cells derived from the same tissue preparation was established. Endothelial cell viability and transendothelial electrical resistance (TEER) were measured in this model and three representative TJ proteins - occludin (OCLN), zonula occludens-1 (ZO-1) and claudin-5 (CLN-5) - as well as several drug efflux transporters - P-glycoprotein (P-gp), multidrug resistance protein-1 and 2 (MRP-1 and MRP-2), organic anion-transporting polypeptide-1 and 3 (oatp1 and oatp3) were analyzed at both the protein and gene transcript level. Functional activity of P-gp and MRP-1 was also assessed. Endothelial cell viability as well as TEER significantly increased in the presence of glial cells. A significant increase of expression of OCLN, ZO-1, and CLN-5 proteins as well as of several drug transporter proteins except oatp3 and MRP-1, was also found in the presence of glial cells. All the gene transcripts protein analyzed were found to be significantly increased in the presence of glial cells. A suitable functional activity of P-gp and MRP-1 was also found. These results demonstrate that this brain endothelium culture system mimics a physiologically relevant situation and may therefore provide a new tool for studying the effects of biological fluids such as serum and cerebrospinal fluid from patients with neurological disorders underlying a BBB alteration in disease pathogenesis.

5.
J Med Chem ; 55(10): 4806-23, 2012 May 24.
Article in English | MEDLINE | ID: mdl-22468936

ABSTRACT

Alpha-7 nicotinic acetylcholine receptors (α7 nAChR) are implicated in the modulation of many cognitive functions such as attention, working memory, and episodic memory. For this reason, α7 nAChR agonists represent promising therapeutic candidates for the treatment of cognitive impairment associated with Alzheimer's disease (AD) and schizophrenia. A medicinal chemistry effort, around our previously reported chemical series, permitted the discovery of a novel class of α7 nAChR agonists with improved selectivity, in particular against the α3 receptor subtype and better ADME profile. The exploration of this series led to the identification of 5-(4-acetyl[1,4]diazepan-1-yl)pentanoic acid [5-(4-methoxyphenyl)-1H-pyrazol-3-yl] amide (25, SEN15924, WAY-361789), a novel, full agonist of the α7 nAChR that was evaluated in vitro and in vivo. Compound 25 proved to be potent and selective, and it demonstrated a fair pharmacokinetic profile accompanied by efficacy in rodent behavioral cognition models (novel object recognition and auditory sensory gating).


Subject(s)
Azepines/chemical synthesis , Nicotinic Agonists/chemical synthesis , Pyrazoles/chemical synthesis , Receptors, Nicotinic/metabolism , Administration, Oral , Animals , Azepines/pharmacokinetics , Azepines/pharmacology , Brain/metabolism , Calcium/metabolism , Catalytic Domain , Cell Line , Cell Membrane Permeability , Cognition/drug effects , Dogs , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Humans , Male , Membrane Potentials/drug effects , Models, Molecular , Nicotinic Agonists/pharmacokinetics , Nicotinic Agonists/pharmacology , Nicotinic Antagonists/chemical synthesis , Nicotinic Antagonists/pharmacokinetics , Nicotinic Antagonists/pharmacology , Patch-Clamp Techniques , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Radioligand Assay , Rats , Rats, Long-Evans , Reflex, Startle/drug effects , Structure-Activity Relationship , alpha7 Nicotinic Acetylcholine Receptor
6.
Eur J Pharm Sci ; 45(5): 570-4, 2012 Apr 11.
Article in English | MEDLINE | ID: mdl-22214813

ABSTRACT

Underprediction of in vivo intrinsic clearance (CLint) from suspended human hepatocytes has recently been shown to be clearance-dependent although the mechanistic basis is currently unknown. One possible explanation is rate limiting transmembrane (passive) permeation into hepatocytes in vitro; evidence to support this has been minor to date, but there has not been a systematic exploration of the impact of passive permeability in vitro. To investigate the relationship between underprediction of in vivo CLint and potentially rate limiting permeability, permeability constants (Px, collated from published studies and determined experimentally in this study), using three alternative methodologies (parallel artificial membrane permeability assay (PAMPA), caco-2 permeability assay and calculated using an empirical model) were compared with CLint from suspended human hepatocytes for 65 drugs from a recently reported database of clearance predictions. Although there was an approximate correspondence between hepatocyte CLint and permeability measured by PAMPA (but not by caco-2 or modelling), prediction accuracy was not dependent on the relative permeability (measured as the ratio of CLint to permeability), indicating the absence of a general rate limitation by passive hepatocyte uptake on metabolic clearance. Further investigation into rate-dependent CLint in hepatocytes is required.


Subject(s)
Hepatocytes/metabolism , Membranes, Artificial , Pharmacokinetics , Caco-2 Cells , Cell Line, Tumor , Cell Membrane Permeability , Humans
7.
Drug Metab Dispos ; 40(1): 104-10, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21998403

ABSTRACT

Prediction of clearance in drug discovery currently relies on human primary hepatocytes, which can vary widely in drug-metabolizing enzyme activity. Potential alternative in vitro models include the HepaRG cell (from immortalized hepatoma cells), which in culture can express drug-metabolizing enzymes to an extent comparable to that of primary hepatocytes. Utility of the HepaRG cell will depend on robust performance, relative to that of primary hepatocytes, in routine high-throughput analysis. In this study, we compared intrinsic clearance (CL(int)) in the recently developed cryopreserved HepaRG cell system with CL(int) in human cryopreserved pooled hepatocytes and with CL(int) in vivo for 26 cytochrome P450 substrate drugs. There was quantitative agreement between CL(int) in HepaRG cells and human hepatocytes, which was linear throughout the range of CL(int) (1-2000 ml · min(-1) · kg(-1)) and not dependent on particular cytochrome P450 involvement. Prediction of CL(int) in HepaRG cells was on average within 2-fold of in vivo CL(int) (using the well stirred liver model), but average fold error was clearance-dependent with greater underprediction (up to at least 5-fold) for the more highly cleared drugs. Recent reporting of this phenomenon in human hepatocytes was therefore confirmed with the hepatocytes used in this study, and hence the HepaRG cell system appears to share an apparently general tendency of clearance-limited CL(int) in cell models. This study shows the cryopreserved HepaRG cell system to be quantitatively comparable to human hepatocytes for prediction of clearance of drug cytochrome P450 substrates and to represent a promising alternative in vitro tool.


Subject(s)
Cryopreservation , Hepatocytes/metabolism , Pharmaceutical Preparations/metabolism , Cell Line, Tumor , Cryopreservation/methods , Female , Hepatocytes/cytology , Hepatocytes/pathology , Humans , Male , Metabolic Clearance Rate/physiology , Predictive Value of Tests
8.
J Med Chem ; 53(11): 4379-89, 2010 Jun 10.
Article in English | MEDLINE | ID: mdl-20465311

ABSTRACT

Alpha-7 nicotinic acetylcholine receptor (alpha7 nAChR) agonists are promising therapeutic candidates for the treatment of cognitive impairment. We report a series of novel, potent small molecule agonists (4-18) of the alpha7 nAChR deriving from our continuing efforts in the areas of Alzheimer's disease and schizophrenia. One of the compounds of the series containing a urea moiety (16) was further shown to be a selective agonist of the alpha7 nAChR with excellent in vitro and in vivo profiles, brain penetration, and oral bioavailability and demonstrated in vivo efficacy in multiple behavioral cognition models. Structural modifications leading to the improved selectivity profile and the biological evaluation of this series of compounds are discussed.


Subject(s)
Nicotinic Agonists/chemical synthesis , Nicotinic Agonists/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Receptors, Nicotinic/metabolism , Urea/analogs & derivatives , Urea/chemical synthesis , Urea/pharmacology , Administration, Oral , Animals , Humans , Inhibitory Concentration 50 , Male , Models, Molecular , Nicotinic Agonists/administration & dosage , Nicotinic Agonists/pharmacokinetics , Protein Conformation , Pyridines/administration & dosage , Pyridines/pharmacokinetics , Rats , Receptors, Nicotinic/chemistry , Structure-Activity Relationship , Substrate Specificity , Urea/administration & dosage , Urea/pharmacokinetics , alpha7 Nicotinic Acetylcholine Receptor
9.
ChemMedChem ; 5(3): 428-35, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20077460

ABSTRACT

S100B contributes to cell proliferation by binding the C terminus of p53 and inhibiting its tumor suppressor function. The use of multiple computational approaches to screen fragment libraries targeting the human S100B-p53 interaction site is reported. This in silico screening led to the identification of 280 novel prospective ligands. NMR spectroscopic experiments revealed specific binding at the p53 interaction site for a set of these compounds and confirmed their potential for further rational optimization. The X-ray crystal structure determined for one of the binders revealed key intermolecular interactions, thus paving the way for structure-based ligand optimization.


Subject(s)
Nerve Growth Factors/metabolism , S100 Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Crystallography, X-Ray , Drug Design , Ligands , Models, Molecular , Nerve Growth Factors/chemistry , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation , S100 Calcium Binding Protein beta Subunit , S100 Proteins/chemistry , Tumor Suppressor Protein p53/chemistry
10.
Bioorg Med Chem ; 17(16): 5834-56, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19620011

ABSTRACT

Novel proapoptotic Smac mimics/IAPs inhibitors have been designed, synthesized and characterized. Computational models and structural studies (crystallography, NMR) have elucidated the SAR of this class of inhibitors, and have permitted further optimization of their properties. In vitro characterization (XIAP BIR3 and linker-BIR2-BIR3 binding, cytotox assays, early ADMET profiling) of the compounds has been performed, identifying one lead for further in vitro and in vivo evaluation.


Subject(s)
Antineoplastic Agents/chemical synthesis , Bridged Bicyclo Compounds/chemistry , Intracellular Signaling Peptides and Proteins/chemistry , Mitochondrial Proteins/chemistry , Neoplasms/drug therapy , X-Linked Inhibitor of Apoptosis Protein/antagonists & inhibitors , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Apoptosis Regulatory Proteins , Bridged Bicyclo Compounds/chemical synthesis , Bridged Bicyclo Compounds/toxicity , Cell Line, Tumor , Computer Simulation , Crystallography, X-Ray , Drug Design , Drug Screening Assays, Antitumor , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mitochondrial Proteins/metabolism , Protein Structure, Tertiary , Structure-Activity Relationship , X-Linked Inhibitor of Apoptosis Protein/chemistry , X-Linked Inhibitor of Apoptosis Protein/metabolism
11.
Cell Res ; 16(3): 306-12, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16541129

ABSTRACT

The very different effects of Cholera Toxin (CT) on cell growth and proliferation may depend on the type of ganglioside receptors in cell membranes and different signal transduction mechanisms triggered, but other functions related to the drug resistance mechanisms can not be excluded. The effect of CT treatment on the "in vitro" clonogenicity, the Population Doubling Time (PDT), apoptosis, PKA activation and Bax and Bcl-2 expression was evaluated in WEHI-3B cell line and its CT-resistant subclone (WEHI-3B/CTRES). In WEHI-3B parental cells the dramatic accumulation of cAMP induced by CT correlated well with PKA activation, increased PDT value, inhibition of clonogenicity and apoptosis. H-89 treatment inhibited PKA activation by CT but did not protect the cells from apoptosis and growth inhibition. In WEHI-3B/CTRES no significant CT-dependent accumulation of cAMP occurred with any increase of PKA activity and PDT. In CT resistant cells (WEHI-3B/CTRES), Bcl-2 expression was down regulated by both CT or drug treatment (eg., ciprofloxacin, CPX) although these cells were protected from CT-dependent apoptosis but not from drug-induced apoptosis. Differently from other cell models described, down regulation of Bcl-2 is proved to be independent on cAMP accumulation and PKA activation. Our observations support the implication of cAMP dependent kinase (PKA) in the inhibition of WEHI-3B cells growth and suggest that, in WEHI-3B/CTRES, Bcl-2 expression could be modulated by CT in the absence of cAMP accumulation. Also in consideration of many contradictory data reported in literature, our cell models (of one sensitive parental cell strain and two clones with different uncrossed specific resistance to CT and CPX) provides a new and interesting tool for better investigating the relationship between the CT signal transduction mechanisms and Bcl-2 expression and function.


Subject(s)
Apoptosis/drug effects , Cholera Toxin/pharmacology , Genes, bcl-2/genetics , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Clone Cells/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Down-Regulation , Drug Resistance, Neoplasm , Enzyme Activation , Leukemia, Myeloid , Mice , Proto-Oncogene Proteins c-bcl-2/biosynthesis , bcl-2-Associated X Protein/biosynthesis
12.
Toxicology ; 216(2-3): 154-67, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16169652

ABSTRACT

Many adverse drug reactions are caused by the cytochrome P450 (CYP) dependent activation of drugs into reactive metabolites. In order to reduce attrition due to metabolism-mediated toxicity and to improve safety of drug candidates, we developed two in vitro cell-based assays by combining an activating system (human CYP3A4) with target cells (HepG2 cells): in the first method we incubated microsomes containing cDNA-expressed CYP3A4 together with HepG2 cells; in the second approach HepG2 cells were transiently transfected with CYP3A4. In both assay systems, CYP3A4 catalyzed metabolism was found to be comparable to the high levels reported in hepatocytes. Both assay systems were used to study ten CYP3A4 substrates known for their potential to form metabolites that exhibit higher toxicity than the parent compounds. Several endpoints of toxicity were evaluated, and the measurement of MTT reduction and intracellular ATP levels were selected to assess cell viability. Results demonstrated that both assay systems are capable to metabolize the test compounds leading to increased toxicity, compared to their respective control systems. The co-incubation with the CYP3A4 inhibitor ketoconazole confirmed that the formation of reactive metabolites was CYP3A4 dependent. To further validate the functionality of the two assay systems, they were also used as a "detoxification system" using selected compounds that can be metabolized by CYP3A4 to metabolites less toxic than their parent compounds. These results show that both assay systems can be used to screen for metabolic activation, or de-activation, which may be useful as a rapid and relatively inexpensive in vitro assay for the prediction of CYP3A4 metabolism-mediated toxicity.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Toxicity Tests/methods , Xenobiotics/metabolism , Xenobiotics/toxicity , Adenosine Triphosphate/metabolism , Albendazole/metabolism , Albendazole/toxicity , Amitriptyline/metabolism , Amitriptyline/toxicity , Animals , Buthionine Sulfoximine/pharmacology , Carbamazepine/metabolism , Carbamazepine/toxicity , Cell Culture Techniques , Cell Line, Tumor , Cell Survival/drug effects , Chromans/metabolism , Chromans/toxicity , Coculture Techniques , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme Inhibitors , Dapsone/metabolism , Dapsone/toxicity , Enzyme Activation/drug effects , Flutamide/metabolism , Flutamide/toxicity , Glutathione/antagonists & inhibitors , Glutathione/chemistry , Glutathione/metabolism , Humans , Isoniazid/metabolism , Isoniazid/toxicity , Microsomes/drug effects , Microsomes/metabolism , Ochratoxins/metabolism , Ochratoxins/toxicity , Piperazines/metabolism , Piperazines/toxicity , Quinidine/metabolism , Quinidine/toxicity , Substrate Specificity , Tamoxifen/metabolism , Tamoxifen/toxicity , Tetrazolium Salts/metabolism , Thiazoles/metabolism , Thiazoles/toxicity , Thiazolidinediones/metabolism , Thiazolidinediones/toxicity , Triazolam/metabolism , Triazolam/toxicity , Troglitazone , Xenobiotics/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...