Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(10): e0137305, 2015.
Article in English | MEDLINE | ID: mdl-26436670

ABSTRACT

Cytokines such as TNFα can polarize microglia/macrophages into different neuroinflammatory types. Skewing of the phenotype towards a cytotoxic state is thought to impair phagocytosis and has been described in Alzheimer's Disease (AD). Neuroinflammation can be perpetuated by a cycle of increasing cytokine production and maintenance of a polarized activation state that contributes to AD progression. In this study, 3xTgAD mice, age 6 months, were treated orally with 3 doses of the TNFα modulating compound isoindolin-1,3 dithione (IDT) for 10 months. We demonstrate that IDT is a TNFα modulating compound both in vitro and in vivo. Following long-term IDT administration, mice were assessed for learning & memory and tissue and serum were collected for analysis. Results demonstrate that IDT is safe for long-term treatment and significantly improves learning and memory in the 3xTgAD mouse model. IDT significantly reduced paired helical filament tau and fibrillar amyloid accumulation. Flow cytometry of brain cell populations revealed that IDT increased the infiltrating neutrophil population while reducing TNFα expression in this population. IDT is a safe and effective TNFα and innate immune system modulator. Thus small molecule, orally bioavailable modulators are promising therapeutics for Alzheimer's disease.


Subject(s)
Alzheimer Disease/drug therapy , Cognition/classification , Isoindoles/administration & dosage , Isoindoles/pharmacology , Neutrophil Infiltration/drug effects , Thioamides/administration & dosage , Thioamides/pharmacology , Thiones/administration & dosage , Thiones/pharmacology , Tumor Necrosis Factor-alpha/metabolism , tau Proteins/chemistry , Administration, Oral , Alzheimer Disease/immunology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Biological Availability , Brain/drug effects , Brain/immunology , Brain/metabolism , Brain/pathology , Cell Line , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Humans , Immunity, Innate/drug effects , Isoindoles/adverse effects , Isoindoles/therapeutic use , Macrophages/drug effects , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/drug effects , Microglia/metabolism , Phenotype , Protein Multimerization/drug effects , Protein Structure, Secondary/drug effects , Safety , Solubility , Thioamides/adverse effects , Thioamides/therapeutic use , Thiones/adverse effects , Thiones/therapeutic use , Tumor Necrosis Factor-alpha/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...