Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anesthesiology ; 101(1): 133-7, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15220782

ABSTRACT

BACKGROUND: Currently available local anesthetics have relatively brief durations of action. An ultralong-acting local anesthetic would benefit patients with acute and chronic pain. The authors prepared and characterized a novel liposomal bupivacaine formulation using remote loading of bupivacaine along an ammonium sulfate gradient and assessed its efficacy in humans. METHODS: A large multivesicular liposomal bupivacaine formulation was prepared by subjecting small unilamellar vesicles to successive freeze-and-thaw cycles. Bupivacaine hydrochloride was then remotely loaded into the liposomes along an ammonium sulfate gradient ([(NH4)2SO4)]intraliposome/[(NH4)2SO4)]medium > 1000). The liposomes were then characterized for size distribution; drug-to-phospholipid ratio; in vitro release profile at 4 degree, 21 degree C, and 37 degree C; sterility; and pyrogenicity. Six subjects each received six intradermal injections in the lower back with 0.5 ml of 0.5, 1.0, and 2% liposomal bupivacaine; 0.5% standard bupivacaine; saline; and "empty" liposomes. Duration of analgesia was assessed using pinprick testing of the skin directly over the injection sites. Results were compared using the log-rank test. RESULTS: The mean large multivesicular vesicle size was 2439 +/- 544 nm, with a drug-to-phospholipid ratio of 1.8, fivefold greater than results previously reported. In vitro release was slowest at 4 degree C. The median duration of analgesia with 0.5% standard bupivacaine was 1 h. The median durations of analgesia after 0.5, 1.0, and 2.0% liposomal bupivacaine were 19, 38, and 48 h, respectively. Neither saline nor "empty" liposomes produced analgesia. CONCLUSIONS: This novel liposomal formulation had a favorable drug-to-phospholipid ratio and prolonged the duration of bupivacaine analgesia in a dose-dependent manner. If these results in healthy volunteers can be duplicated in the clinical setting, this formulation has the potential to significantly impact the management of pain.


Subject(s)
Anesthetics, Local/administration & dosage , Anesthetics, Local/therapeutic use , Bupivacaine/administration & dosage , Bupivacaine/therapeutic use , Adult , Ammonium Sulfate/chemistry , Anesthetics, Local/adverse effects , Bupivacaine/adverse effects , Chemistry, Pharmaceutical , Delayed-Action Preparations , Drug Carriers , Drug Compounding , Humans , Injections, Intradermal , Liposomes , Male , Pain Measurement/drug effects , Particle Size
2.
Article in English | MEDLINE | ID: mdl-12188105

ABSTRACT

All of the therapeutic properties of marihuana (analgesic, antiemetic, appetite stimulant, antiglaucoma) have been duplicated by the tetrahydrocannabinol (THC) molecule or its synthetic derivatives. Today, the molecular mechanisms of action of these compounds have led to a general understanding of the pharmacological effects of marihuana and of its therapeutic properties. These mechanisms involve the specific binding of THC to the 7-transmembrane (7TM) domain G protein-linked receptor, a molecular switch which regulates signal transduction in the cell membrane. The natural ligand of the 7TM receptor is an eicosanoid, arachidonylethanolamide (AEA), generated in the membrane and derived from arachidonic acid. THC acts as a substitute ligand to the 7TM receptor site of AEA. THC would deregulate the physiological function of the 7TM receptor and of its ligand AEA. As a result, the therapeutic effects of the drug may not be separated from its adverse psychoactive and cardiovascular effects. The binding of THC to the 7TM receptor site of AEA induces allosteric changes in the receptor sites of neurotransmitter and opiates resulting in variable interactions and pharmacological responses. The pharmacokinetics of THC with its prolonged storage in fat and its slow release result in variable and delayed pharmacological response, which precludes precise dosing to achieve timely therapeutic effects. The experimental use of THC and of its synthetic analogues, agonists, and antagonists has provided novel information in the nature of molecular signaling in the cell membrane. As a result, the relationships between allosteric receptor responsiveness, molecular configuration of proteins, and physiological regulation of cellular and organ function may be further investigated.


Subject(s)
Cannabinoids , Dronabinol/metabolism , Dronabinol/therapeutic use , Psychotropic Drugs/metabolism , Psychotropic Drugs/therapeutic use , Animals , Cannabinoids/metabolism , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Dronabinol/pharmacology , Humans , Nervous System Diseases/drug therapy , Nervous System Diseases/metabolism , Psychotropic Drugs/pharmacology , Receptors, Cannabinoid , Receptors, Drug/agonists , Receptors, Drug/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...