Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Article in English | MEDLINE | ID: mdl-38724044

ABSTRACT

To explore the effects of climate change on malaria and 20 neglected tropical diseases (NTDs), and potential effect amelioration through mitigation and adaptation, we searched for papers published from January 2010 to October 2023. We descriptively synthesised extracted data. We analysed numbers of papers meeting our inclusion criteria by country and national disease burden, healthcare access and quality index (HAQI), as well as by climate vulnerability score. From 42 693 retrieved records, 1543 full-text papers were assessed. Of 511 papers meeting the inclusion criteria, 185 studied malaria, 181 dengue and chikungunya and 53 leishmaniasis; other NTDs were relatively understudied. Mitigation was considered in 174 papers (34%) and adaption strategies in 24 (5%). Amplitude and direction of effects of climate change on malaria and NTDs are likely to vary by disease and location, be non-linear and evolve over time. Available analyses do not allow confident prediction of the overall global impact of climate change on these diseases. For dengue and chikungunya and the group of non-vector-borne NTDs, the literature privileged consideration of current low-burden countries with a high HAQI. No leishmaniasis papers considered outcomes in East Africa. Comprehensive, collaborative and standardised modelling efforts are needed to better understand how climate change will directly and indirectly affect malaria and NTDs.

2.
BMC Microbiol ; 18(Suppl 1): 163, 2018 11 23.
Article in English | MEDLINE | ID: mdl-30470184

ABSTRACT

BACKGROUND: Susceptibility of tsetse flies (Glossina spp.) to trypanosomes of both humans and animals has been associated with the presence of the endosymbiont Sodalis glossinidius. However, intrinsic biological characteristics of the flies and environmental factors can influence the presence of both S. glossinidius and the parasites. It thus remains unclear whether it is the S. glossinidius or other attributes of the flies that explains the apparent association. The objective of this study was to test whether the presence of Trypanosoma vivax, T. congolense and T. brucei are related to the presence of S. glossinidius in tsetse flies when other factors are accounted for: geographic location, species of Glossina, sex or age of the host flies. RESULTS: Flies (n = 1090) were trapped from four sites in the Shimba Hills and Nguruman regions in Kenya. Sex and species of tsetse (G. austeni, G. brevipalpis, G. longipennis and G. pallidipes) were determined based on external morphological characters and age was estimated by a wing fray score method. The presence of trypanosomes and S. glossinidius was detected using PCR targeting the internal transcribed spacer region 1 and the haemolysin gene, respectively. Sequencing was used to confirm species identification. Generalised Linear Models (GLMs) and Multiple Correspondence Analysis (MCA) were applied to investigate multivariable associations. The overall prevalence of trypanosomes was 42.1%, but GLMs revealed complex patterns of associations: the presence of S. glossinidius was associated with trypanosome presence but only in interactions with other factors and only in some species of trypanosomes. The strongest association was found for T. congolense, and no association was found for T. vivax. The MCA also suggested only a weak association between the presence of trypanosomes and S. glossinidius. Trypanosome-positive status showed strong associations with sex and age while S. glossinidius-positive status showed a strong association with geographic location and species of fly. CONCLUSIONS: We suggest that previous conclusions about the presence of endosymbionts increasing probability of trypanosome presence in tsetse flies may have been confounded by other factors, such as community composition of the tsetse flies and the specific trypanosomes found in different regions.


Subject(s)
Enterobacteriaceae/physiology , Symbiosis , Tsetse Flies/microbiology , Tsetse Flies/parasitology , Age Factors , Animals , Environment , Female , Geography , Kenya , Male , Sex Factors
3.
Parasit Vectors ; 9(1): 301, 2016 05 23.
Article in English | MEDLINE | ID: mdl-27216812

ABSTRACT

BACKGROUND: Animal African Trypanosomiasis (AAT) is caused by several species of trypanosomes including Trypanosoma congolense, T. vivax, T. godfreyi, T. simiae and T. brucei. Two of the subspecies of T. brucei also cause Human African Trypanosomiasis. Although some of them can be mechanically transmitted by biting flies; these trypanosomes are all transmitted by tsetse flies which are the cyclical vectors of Trypanosoma congolense, T. godfreyi, T. simiae and T. brucei. We present here the first report assessing the prevalence of trypanosomes in tsetse flies in Nigeria using molecular tools. METHODS: 488 tsetse flies of three species, Glossina palpalis palpalis, G. tachinoides and G. morsitans submorsitans were collected from Wuya, Niger State and Yankari National Park, Bauchi State in 2012. Trypanosomes were detected and identified using an ITS1 PCR assay on DNA purified from the 'head plus proboscis' (H + P) and abdomen (ABD) parts of each fly. RESULTS: T. vivax and T. congolense Savannah were the major parasites detected. Trypanosomes prevalence was 7.1 % in G. p. palpalis, 11.9 % in G. tachinoides and 13.5 % in G. m. submorsitans. Prevalences of T. congolense Savannah ranged from 2.5 to 6.7 % and of T. vivax were approximately 4.5 %. Trypanosoma congolense Forest, T. godfreyi and T. simiae were also detected in the site of Yankari. The main biological and ecological determinants of trypanosome prevalence were the fly sex, with more trypanosomes found in females than males, and the site, with T. congolense subspp. being more abundant in Yankari than in Wuya. As expected, the trypanosome species diversity was higher in Yankari National Park than in the more agricultural site of Wuya where vertebrate host species diversity is lower. CONCLUSIONS: Our results show that T. congolense Savannah and T. vivax are the main species of parasite potentially causing AAT in the two study sites and that Yankari National Park is a potential reservoir of trypanosomes both in terms of parasite abundance and species diversity.


Subject(s)
Insect Vectors/parasitology , Trypanosoma/isolation & purification , Trypanosomiasis, African/parasitology , Tsetse Flies/parasitology , Animals , Female , Humans , Male , Nigeria/epidemiology , Trypanosoma/classification , Trypanosoma/genetics , Trypanosoma congolense/classification , Trypanosoma congolense/genetics , Trypanosoma congolense/isolation & purification , Trypanosoma vivax/classification , Trypanosoma vivax/genetics , Trypanosoma vivax/isolation & purification , Trypanosomiasis, African/epidemiology
4.
J Antimicrob Chemother ; 69(3): 651-63, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24235095

ABSTRACT

OBJECTIVES: Trypanosoma brucei drug transporters include the TbAT1/P2 aminopurine transporter and the high-affinity pentamidine transporter (HAPT1), but the genetic identity of HAPT1 is unknown. We recently reported that loss of T. brucei aquaglyceroporin 2 (TbAQP2) caused melarsoprol/pentamidine cross-resistance (MPXR) in these parasites and the current study aims to delineate the mechanism by which this occurs. METHODS: The TbAQP2 loci of isogenic pairs of drug-susceptible and MPXR strains of T. brucei subspecies were sequenced. Drug susceptibility profiles of trypanosome strains were correlated with expression of mutated TbAQP2 alleles. Pentamidine transport was studied in T. brucei subspecies expressing TbAQP2 variants. RESULTS: All MPXR strains examined contained TbAQP2 deletions or rearrangements, regardless of whether the strains were originally adapted in vitro or in vivo to arsenicals or to pentamidine. The MPXR strains and AQP2 knockout strains had lost HAPT1 activity. Reintroduction of TbAQP2 in MPXR trypanosomes restored susceptibility to the drugs and reinstated HAPT1 activity, but did not change the activity of TbAT1/P2. Expression of TbAQP2 sensitized Leishmania mexicana promastigotes 40-fold to pentamidine and >1000-fold to melaminophenyl arsenicals and induced a high-affinity pentamidine transport activity indistinguishable from HAPT1 by Km and inhibitor profile. Grafting the TbAQP2 selectivity filter amino acid residues onto a chimeric allele of AQP2 and AQP3 partly restored susceptibility to pentamidine and an arsenical. CONCLUSIONS: TbAQP2 mediates high-affinity uptake of pentamidine and melaminophenyl arsenicals in trypanosomes and TbAQP2 encodes the previously reported HAPT1 activity. This finding establishes TbAQP2 as an important drug transporter.


Subject(s)
Aquaglyceroporins/metabolism , Drug Resistance , Melarsoprol/metabolism , Pentamidine/metabolism , Trypanocidal Agents/metabolism , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/metabolism , Alleles , Biological Transport , Genes, Protozoan , Sequence Analysis, DNA
5.
PLoS Negl Trop Dis ; 7(11): e2526, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24244771

ABSTRACT

African trypanosomes are unusual among pathogenic protozoa in that they can undergo their complete morphological life cycle in the tsetse fly vector with mating as a non-obligatory part of this development. Trypanosoma brucei rhodesiense, which infects humans and livestock in East and Southern Africa, has classically been described as a host-range variant of the non-human infective Trypanosoma brucei that occurs as stable clonal lineages. We have examined T. b. rhodesiense populations from East (Uganda) and Southern (Malawi) Africa using a panel of microsatellite markers, incorporating both spatial and temporal analyses. Our data demonstrate that Ugandan T. b. rhodesiense existed as clonal populations, with a small number of highly related genotypes and substantial linkage disequilibrium between pairs of loci. However, these populations were not stable as the dominant genotypes changed and the genetic diversity also reduced over time. Thus these populations do not conform to one of the criteria for strict clonality, namely stability of predominant genotypes over time, and our results show that, in a period in the mid 1990s, the previously predominant genotypes were not detected but were replaced by a novel clonal population with limited genetic relationship to the original population present between 1970 and 1990. In contrast, the Malawi T. b. rhodesiense population demonstrated significantly greater diversity and evidence for frequent genetic exchange. Therefore, the population genetics of T. b. rhodesiense is more complex than previously described. This has important implications for the spread of the single copy T. b. rhodesiense gene that allows human infectivity, and therefore the epidemiology of the human disease, as well as suggesting that these parasites represent an important organism to study the influence of optional recombination upon population genetic dynamics.


Subject(s)
Genetics, Population/methods , Trypanosoma brucei rhodesiense/genetics , Animals , DNA, Protozoan/genetics , Genotype , Humans , Malawi , Trypanosoma brucei rhodesiense/classification , Trypanosomiasis, African/epidemiology , Uganda
6.
PLoS One ; 8(7): e67852, 2013.
Article in English | MEDLINE | ID: mdl-23844111

ABSTRACT

BACKGROUND: Trypanosoma brucei is the causative agent of African Sleeping Sickness in humans and contributes to the related veterinary disease, Nagana. T. brucei is segregated into three subspecies based on host specificity, geography and pathology. T. b. brucei is limited to animals (excluding some primates) throughout sub-Saharan Africa and is non-infective to humans due to trypanolytic factors found in human serum. T. b. gambiense and T. b. rhodesiense are human infective sub-species. T. b. gambiense is the more prevalent human, causing over 97% of human cases. Study of T. b. gambiense is complicated in that there are two distinct groups delineated by genetics and phenotype. The relationships between the two groups and local T. b. brucei are unclear and may have a bearing on the evolution of the human infectivity traits. METHODOLOGY/PRINCIPAL FINDINGS: A collection of sympatric T. brucei isolates from Côte d'Ivoire, consisting of T. b. brucei and both groups of T. b. gambiense have previously been categorized by isoenzymes, RFLPs and Blood Incubation Infectivity Tests. These samples were further characterized using the group 1 specific marker, TgSGP, and seven microsatellites. The relationships between the T. b. brucei and T. b. gambiense isolates were determined using principal components analysis, neighbor-joining phylogenetics, STRUCTURE, FST, Hardy-Weinberg equilibrium and linkage disequilibrium. CONCLUSIONS/SIGNIFICANCE: Group 1 T. b. gambiense form a clonal genetic group, distinct from group 2 and T. b. brucei, whereas group 2 T. b. gambiense are genetically indistinguishable from local T. b. brucei. There is strong evidence for mating within and between group 2 T. b. gambiense and T. b. brucei. We found no evidence to support the hypothesis that group 2 T. b. gambiense are hybrids of group 1 and T. b. brucei, suggesting that human infectivity has evolved independently in groups 1 and 2 T. b. gambiense.


Subject(s)
Trypanosoma brucei brucei/genetics , Trypanosoma brucei gambiense/genetics , Trypanosomiasis, African/parasitology , Animals , Cote d'Ivoire , Genetic Markers/genetics , Genetics, Population , Genotype , Humans , Linkage Disequilibrium , Microsatellite Repeats/genetics , Phylogeny , Principal Component Analysis , Swine , Trypanosoma brucei brucei/classification , Trypanosoma brucei gambiense/classification
7.
PLoS Negl Trop Dis ; 5(9): e1287, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21909441

ABSTRACT

BACKGROUND: The three sub-species of Trypanosoma brucei are important pathogens of sub-Saharan Africa. T. b. brucei is unable to infect humans due to sensitivity to trypanosome lytic factors (TLF) 1 and 2 found in human serum. T. b. rhodesiense and T. b. gambiense are able to resist lysis by TLF. There are two distinct sub-groups of T. b. gambiense that differ genetically and by human serum resistance phenotypes. Group 1 T. b. gambiense have an invariant phenotype whereas group 2 show variable resistance. Previous data indicated that group 1 T. b. gambiense are resistant to TLF-1 due in-part to reduced uptake of TLF-1 mediated by reduced expression of the TLF-1 receptor (the haptoglobin-hemoglobin receptor (HpHbR)) gene. Here we investigate if this is also true in group 2 parasites. METHODOLOGY: Isogenic resistant and sensitive group 2 T. b. gambiense were derived and compared to other T. brucei parasites. Both resistant and sensitive lines express the HpHbR gene at similar levels and internalized fluorescently labeled TLF-1 similar fashion to T. b. brucei. Both resistant and sensitive group 2, as well as group 1 T. b. gambiense, internalize recombinant APOL1, but only sensitive group 2 parasites are lysed. CONCLUSIONS: Our data indicate that, despite group 1 T. b. gambiense avoiding TLF-1, it is resistant to the main lytic component, APOL1. Similarly group 2 T. b. gambiense is innately resistant to APOL1, which could be based on the same mechanism. However, group 2 T. b. gambiense variably displays this phenotype and expression does not appear to correlate with a change in expression site or expression of HpHbR. Thus there are differences in the mechanism of human serum resistance between T. b. gambiense groups 1 and 2.


Subject(s)
Apolipoproteins/pharmacology , Biological Products/pharmacology , Lipoproteins, HDL/pharmacology , Trypanosoma brucei gambiense/drug effects , Apolipoprotein L1 , Apolipoproteins/immunology , Cell Survival/drug effects , Drug Resistance , Humans , Lipoproteins, HDL/immunology , Parasitic Sensitivity Tests , Serum/immunology , Serum/parasitology , Trypanosoma brucei gambiense/classification , Trypanosoma brucei gambiense/immunology , Trypanosoma brucei gambiense/physiology
8.
Vet Parasitol ; 179(1-3): 35-42, 2011 Jun 30.
Article in English | MEDLINE | ID: mdl-21377802

ABSTRACT

Trypanosomosis caused by infection with protozoan parasites of the genus Trypanosoma is a major health constraint to cattle production in many African countries. One hundred and seventy one Bos indicus cattle from traditional pastoral Maasai (87) and more intensively managed Boran (84) animals in Tanzania were screened by PCR for the presence of African animal trypanosomes (Trypanosoma congolense, Trypanosoma vivax and Trypanosoma brucei), using blood samples archived on FTA cards. All cattle screened for trypanosomes were also genotyped at the highly polymorphic major histocompatibility complex (MHC) class II DRB3 locus to investigate possible associations between host MHC and trypanosome infection. Overall, 23.4% of the 171 cattle tested positive for at least one of the three trypanosome species. The prevalence of individual trypanosome species was 8.8% (T. congolense), 4.7% (T. vivax) and 15.8% (T. brucei). The high prevalence of T. brucei compared with T. congolense and T. vivax was unexpected as this species has previously been considered to be of lesser importance in terms of African bovine trypanosomosis. Significantly higher numbers of Maasai cattle were infected with T. brucei (23.0%, p=0.009) and T. congolense (13.8%, p=0.019) compared with Boran cattle (8.3% and 3.6%, respectively). Analysis of BoLA-DRB3 diversity in this cohort identified extensive allelic diversity. Thirty-three BoLA-DRB3 PCR-RFLP defined alleles were identified. One allele (DRB3*15) was significantly associated with an increased risk (odds ratio, OR=2.71, p=0.034) of T. brucei infection and three alleles (DRB3*35, *16 and *23) were associated with increased risk of T. congolense infection. While further work is required to dissect the role of these alleles in susceptibility to T. brucei and T. congolense infections, this study demonstrates the utility of FTA archived blood samples in combined molecular analyses of both host and pathogen.


Subject(s)
Cattle Diseases/parasitology , Genetic Predisposition to Disease , Trypanosomiasis, African/veterinary , Animals , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/genetics , Cohort Studies , Genotype , Prevalence , Tanzania/epidemiology , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/genetics
9.
Proc Natl Acad Sci U S A ; 107(37): 16137-41, 2010 Sep 14.
Article in English | MEDLINE | ID: mdl-20805508

ABSTRACT

Human innate immunity against most African trypanosomes, including Trypanosoma brucei brucei, is mediated by a minor subclass of toxic serum HDL, called trypanosome lytic factor-1 (TLF-1). This HDL contains two primate specific proteins, apolipoprotein L-1 and haptoglobin (Hp)-related protein, as well as apolipoprotein A-1. These assembled proteins provide a powerful defense against trypanosome infection. Trypanosoma brucei rhodesiense causes human African sleeping sickness because it has evolved an inhibitor of TLF-1, serum resistance-associated (SRA) protein. Trypanosoma brucei gambiense lacks the SRA gene, yet it infects humans. As transfection of T. b. gambiense (group 1) is not possible, we initially used in vitro-selected TLF-1-resistant T. b. brucei to examine SRA-independent mechanisms of TLF-1 resistance. Here we show that TLF-1 resistance in T. b. brucei is caused by reduced expression of the Hp/Hb receptor gene (TbbHpHbR). Importantly, T. b. gambiense (group 1) also showed a marked reduction in uptake of TLF-1 and a corresponding decrease in expression of T. b. gambiense Hp/Hb receptor (TbgHpHbR). Ectopic expression of TbbHpHbR in TLF-1-resistant T. b. brucei rescued TLF-1 uptake, demonstrating that decreased TbbHpHbR expression conferred TLF-1 resistance. Ectopic expression of TbgHpHbR in TLF-1-resistant T. b. brucei failed to rescue TLF-1 killing, suggesting that coding sequence changes altered Hp/Hb receptor binding affinity for TLF-1. We propose that the combination of coding sequence mutations and decreased expression of TbgHpHbR directly contribute to parasite evasion of human innate immunity and infectivity of group 1 T. b. gambiense.


Subject(s)
Lipoproteins, HDL/metabolism , Receptors, Cell Surface/metabolism , Trypanosoma brucei gambiense/metabolism , Animals , Cell Line , Gene Expression Regulation , Humans , Protein Binding , RNA Interference , RNA, Messenger/genetics , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Trypanosoma brucei gambiense/immunology , Trypanosoma brucei gambiense/isolation & purification
10.
Infect Immun ; 78(3): 1096-108, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20086091

ABSTRACT

The postgenomic era has revolutionized approaches to defining host-pathogen interactions and the investigation of the influence of genetic variation in either protagonist upon infection outcome. We analyzed pathology induced by infection with two genetically distinct Trypanosoma brucei strains and found that pathogenesis is partly strain specific, involving distinct host mechanisms. Infections of BALB/c mice with one strain (927) resulted in more severe anemia and greater erythropoietin production compared to infections with the second strain (247), which, contrastingly, produced greater splenomegaly and reticulocytosis. Plasma interleukin-10 (IL-10) and gamma interferon levels were significantly higher in strain 927-infected mice, whereas IL-12 was higher in strain 247-infected mice. To define mechanisms underlying these differences, expression microarray analysis of host genes in the spleen at day 10 postinfection was undertaken. Rank product analysis (RPA) showed that 40% of the significantly differentially expressed genes were specific to infection with one or the other trypanosome strain. RPA and pathway analysis identified LXR/RXR signaling, IL-10 signaling, and alternative macrophage activation as the most significantly differentially activated host processes. These data suggest that innate immune response modulation is a key determinant in trypanosome infections, the pattern of which can vary, dependent upon the trypanosome strain. This strongly suggests that a parasite genetic component is responsible for causing disease in the host. Our understanding of trypanosome infections is largely based on studies involving single parasite strains, and our results suggest that an integrated host-parasite approach is required for future studies on trypanosome pathogenesis. Furthermore, it is necessary to incorporate parasite variation into both experimental systems and models of pathogenesis.


Subject(s)
Genetic Variation , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/pathogenicity , Trypanosomiasis, African/pathology , Trypanosomiasis, African/parasitology , Anemia/etiology , Animals , Erythropoietin/metabolism , Gene Expression Profiling , Interferon-gamma/blood , Interleukin-10/blood , Interleukin-12/blood , Macrophage Activation , Mice , Mice, Inbred BALB C , Reticulocytosis , Splenomegaly/etiology , Trypanosoma brucei brucei/immunology , Trypanosomiasis, African/immunology
11.
Eukaryot Cell ; 9(2): 336-43, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19966032

ABSTRACT

The P2 aminopurine transporter, encoded by TbAT1 in African trypanosomes in the Trypanosoma brucei group, carries melaminophenyl arsenical and diamidine drugs into these parasites. Loss of this transporter contributes to drug resistance. We identified the genomic location of TbAT1 to be in the subtelomeric region of chromosome 5 and determined the status of the TbAT1 gene in two trypanosome lines selected for resistance to the melaminophenyl arsenical, melarsamine hydrochloride (Cymelarsan), and in a Trypanosoma equiperdum clone selected for resistance to the diamidine, diminazene aceturate. In the Trypanosoma brucei gambiense STIB 386 melarsamine hydrochloride-resistant line, TbAT1 is deleted, while in the Trypanosoma brucei brucei STIB 247 melarsamine hydrochloride-resistant and T. equiperdum diminazene-resistant lines, TbAT1 is present, but expression at the RNA level is no longer detectable. Further characterization of TbAT1 in T. equiperdum revealed that a loss of heterozygosity at the TbAT1 locus accompanied loss of expression and that P2-mediated uptake of [(3)H]diminazene is lost in drug-resistant T. equiperdum. Adenine-inhibitable adenosine uptake is still detectable in a DeltaTbat1 T. b. brucei mutant, although at a greatly reduced capacity compared to that of the wild type, indicating that an additional adenine-inhibitable adenosine permease, distinct from P2, is present in these cells.


Subject(s)
Membrane Transport Proteins/genetics , Protozoan Proteins/genetics , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , 3' Untranslated Regions , DNA, Protozoan/metabolism , Diminazene/analogs & derivatives , Diminazene/pharmacology , Drug Resistance/genetics , Membrane Transport Proteins/metabolism , Open Reading Frames , Protozoan Proteins/metabolism , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism
12.
PLoS Negl Trop Dis ; 3(12): e557, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19956590

ABSTRACT

The progression and variation of pathology during infections can be due to components from both host or pathogen, and/or the interaction between them. The influence of host genetic variation on disease pathology during infections with trypanosomes has been well studied in recent years, but the role of parasite genetic variation has not been extensively studied. We have shown that there is parasite strain-specific variation in the level of splenomegaly and hepatomegaly in infected mice and used a forward genetic approach to identify the parasite loci that determine this variation. This approach allowed us to dissect and identify the parasite loci that determine the complex phenotypes induced by infection. Using the available trypanosome genetic map, a major quantitative trait locus (QTL) was identified on T. brucei chromosome 3 (LOD = 7.2) that accounted for approximately two thirds of the variance observed in each of two correlated phenotypes, splenomegaly and hepatomegaly, in the infected mice (named TbOrg1). In addition, a second locus was identified that contributed to splenomegaly, hepatomegaly and reticulocytosis (TbOrg2). This is the first use of quantitative trait locus mapping in a diploid protozoan and shows that there are trypanosome genes that directly contribute to the progression of pathology during infections and, therefore, that parasite genetic variation can be a critical factor in disease outcome. The identification of parasite loci is a first step towards identifying the genes that are responsible for these important traits and shows the power of genetic analysis as a tool for dissecting complex quantitative phenotypic traits.


Subject(s)
Host-Parasite Interactions , Quantitative Trait Loci , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/pathogenicity , Trypanosomiasis, African/pathology , Animals , Disease Models, Animal , Humans , Liver/pathology , Mice , Mice, Inbred ICR , Protozoan Proteins/genetics , Spleen/pathology , Trypanosomiasis, African/parasitology , Virulence
13.
Int J Parasitol ; 39(13): 1475-83, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19520081

ABSTRACT

African animal trypanosomiasis, or Nagana, is a debilitating and economically costly disease with a major impact on animal health in sub-Saharan Africa. Trypanosoma vivax, one of the principal trypanosome species responsible for the disease, infects a wide host range including cattle, goats, horses and donkeys and is transmitted both cyclically by tsetse flies and mechanically by other biting flies, resulting in a distribution covering large swathes of South America and much of sub-Saharan Africa. While there is evidence for mating in some of the related trypanosome species, Trypanosoma brucei, Trypanosoma congolense and Trypanosoma cruzi, very little work has been carried out to examine this question in T. vivax. Understanding whether mating occurs in T. vivax will provide insight into the dynamics of trait inheritance, for example the spread of drug resistance, as well as examining the origins of meiosis in the order Kinetoplastida. With this in mind we have identified orthologues of eight core meiotic genes within the genome, the presence of which imply that the potential for mating exists in this species. In order to address whether mating occurs, we have investigated a sympatric field population of T. vivax collected from livestock in The Gambia, using microsatellite markers developed for this species. Our analysis has identified a clonal population structure showing significant linkage disequilibrium, homozygote deficits and disagreement with Hardy-Weinberg predictions at six microsatellite loci, indicative of a lack of mating in this population of T. vivax.


Subject(s)
Microsatellite Repeats/genetics , Trypanosoma vivax/genetics , Animals , Cattle/parasitology , Copulation , Equidae/parasitology , Gambia , Genotype , Goats/parasitology , Horses/parasitology , Host Specificity , Humans , Livestock/parasitology , Polymerase Chain Reaction
14.
PLoS One ; 4(5): e5564, 2009.
Article in English | MEDLINE | ID: mdl-19440370

ABSTRACT

The protozoan parasite, Trypanosoma congolense, is one of the most economically important pathogens of livestock in Africa and, through its impact on cattle health and productivity, has a significant effect on human health and well being. Despite the importance of this parasite our knowledge of some of the fundamental biological processes is limited. For example, it is unknown whether mating takes place. In this paper we have taken a population genetics based approach to address this question. The availability of genome sequence of the parasite allowed us to identify polymorphic microsatellite markers, which were used to genotype T. congolense isolates from livestock in a discrete geographical area of The Gambia. The data showed a high level of diversity with a large number of distinct genotypes, but a deficit in heterozygotes. Further analysis identified cryptic genetic subdivision into four sub-populations. In one of these, parasite genotypic diversity could only be explained by the occurrence of frequent mating in T. congolense. These data are completely inconsistent with previous suggestions that the parasite expands asexually in the absence of mating. The discovery of mating in this species of trypanosome has significant consequences for the spread of critical traits, such as drug resistance, as well as for fundamental aspects of the biology and epidemiology of this neglected but economically important pathogen.


Subject(s)
Sexual Behavior, Animal/physiology , Trypanosoma congolense/physiology , Animals , Genetics, Population/methods , Genotype , Microsatellite Repeats/genetics , Phylogeny , Polymorphism, Genetic/genetics , Trypanosoma congolense/classification , Trypanosoma congolense/genetics
15.
J Infect Dis ; 198(2): 167-75, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18549316

ABSTRACT

BACKGROUND: This study compared patterns of recognition of defined Schistosoma haematobium adult worm antigens by serum antibodies from schistosome-exposed Zimbabweans aged 5-18 years. METHODS: The population was stratified by age and infection intensity into 9 groups within which serum specimens were pooled and used to screen for protein recognition by 2-dimensional Western blotting. Recognized proteins were identified by electrospray ionizing tandem mass spectrometry. RESULTS: A total of 71 antigens were recognized by >or=1 of the serum pools. The recognition varied distinctly with host age and infection intensity, with some isoform-specific responses. The repertoire of antigens recognized increased with age, peaking in the oldest participants whose had no or mild-to-moderate infection intensity. The intensity of antigen recognition also increased with age, peaking in the oldest participants with the heaviest infection intensity. CONCLUSIONS: The recognition of specific schistosome antigens, both in terms of the diversity of antigens recognized and the intensity of antigen recognition, increased with duration of exposure to infection, supporting the hypothesis that the slow development of schistosome-acquired immunity is due to the slow accumulation of responsiveness to relevant parasite antigens.


Subject(s)
Antibodies, Helminth/blood , Schistosoma haematobium/immunology , Schistosomiasis haematobia/immunology , Adolescent , Adult , Animals , Antigens, Helminth/blood , Child , Child, Preschool , Disease Progression , Female , Humans , Immunoblotting , Incidence , Male , Prevalence , Schistosoma haematobium/growth & development , Schistosomiasis haematobia/epidemiology , Time Factors , Zimbabwe/epidemiology
16.
Genome Biol ; 9(6): R103, 2008.
Article in English | MEDLINE | ID: mdl-18570680

ABSTRACT

BACKGROUND: Trypanosoma brucei is the causative agent of human sleeping sickness and animal trypanosomiasis in sub-Saharan Africa, and it has been subdivided into three subspecies: Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, which cause sleeping sickness in humans, and the nonhuman infective Trypanosoma brucei brucei. T. b. gambiense is the most clinically relevant subspecies, being responsible for more than 90% of all trypanosomal disease in humans. The genome sequence is now available, and a Mendelian genetic system has been demonstrated in T. brucei, facilitating genetic analysis in this diploid protozoan parasite. As an essential step toward identifying loci that determine important traits in the human-infective subspecies, we report the construction of a high-resolution genetic map of the STIB 386 strain of T. b. gambiense. RESULTS: The genetic map was determined using 119 microsatellite markers assigned to the 11 megabase chromosomes. The total genetic map length of the linkage groups was 733.1 cM, covering a physical distance of 17.9 megabases with an average map unit size of 24 kilobases/cM. Forty-seven markers in this map were also used in a genetic map of the nonhuman infective T. b. brucei subspecies, permitting comparison of the two maps and showing that synteny is conserved between the two subspecies. CONCLUSION: The genetic linkage map presented here is the first available for the human-infective trypanosome T. b. gambiense. In combination with the genome sequence, this opens up the possibility of using genetic analysis to identify the loci responsible for T. b. gambiense specific traits such as human infectivity as well as comparative studies of parasite field populations.


Subject(s)
Chromosome Mapping , Chromosome Segregation , Crossing Over, Genetic , Trypanosoma brucei gambiense/genetics , Animals , Genes, Protozoan , Microsatellite Repeats , Recombination, Genetic
18.
Exp Parasitol ; 114(3): 147-53, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16624308

ABSTRACT

We compared two methods to generate polymorphic markers to investigate the population genetics of Trypanosoma evansi; random amplified polymorphic DNA (RAPD) and amplified restriction fragment length polymorphism (AFLP) analyses. AFLP accessed many more polymorphisms than RAPD. Cluster analysis of the AFLP data showed that 12 T.evansi isolates were very similar ('type A') whereas 2 isolates differed substantially ('type B'). Type A isolates have been generally regarded as genetically identical but AFLP analysis was able to identify multiple differences between them and split the type A T. evansi isolates into two distinct clades.


Subject(s)
Genetic Variation , Polymorphism, Restriction Fragment Length , Random Amplified Polymorphic DNA Technique , Trypanosoma/genetics , Animals , Antelopes , Camelus , Cluster Analysis , DNA, Protozoan/chemistry , DNA, Protozoan/isolation & purification , Humans , Kenya , Mice , Trypanosoma/classification , Trypanosoma brucei rhodesiense/classification , Trypanosoma brucei rhodesiense/genetics , Tsetse Flies
19.
Proteomics ; 6(9): 2726-32, 2006 May.
Article in English | MEDLINE | ID: mdl-16526094

ABSTRACT

We have undertaken 2-DE and MS to identify proteins associated with arsenical drug resistance in Trypanosoma brucei. This parasite causes sleeping sickness in humans, and arsenical drug resistance is a significant potential problem. Comparative analysis of approximately 2000 spots resolved by 2-DE in the soluble proteomes of drug-sensitive and drug-resistant isogenic lines of T. brucei identified a protein spot whose absence associated with resistance to the arsenical drug, Cymelarsan. MS matched this protein to an identical pair of tandem genes Tb09.211.0120 and 0130 that encode a putative nascent polypeptide associated complex subunit. This protein also occurs as an isoform located in both resistant and sensitive lines at a similar molecular weight, but different pI. The difference between isogenic lines was confirmed by Western blot using an antibody against recombinant protein. Both genes were identical in sequence between drug-sensitive and drug-resistant lines and both were transcribed as determined by RT-PCR. We postulate that the missing protein isoform arose due to the lack of a PTM.


Subject(s)
Arsenicals/pharmacology , Drug Resistance , Proteome/analysis , Proteome/genetics , Trypanosoma brucei brucei/drug effects , Animals , Electrophoresis, Gel, Two-Dimensional , Mass Spectrometry , Proteome/drug effects , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/genetics
20.
Nucleic Acids Res ; 33(21): 6688-93, 2005.
Article in English | MEDLINE | ID: mdl-16314301

ABSTRACT

Trypanosoma brucei is the causative agent of African sleeping sickness in humans and contributes to the debilitating disease 'Nagana' in cattle. To date we know little about the genes that determine drug resistance, host specificity, pathogenesis and virulence in these parasites. The availability of the complete genome sequence and the ability of the parasite to undergo genetic exchange have allowed genetic investigations into this parasite and here we report the first genetic map of T.brucei for the genome reference stock TREU 927, comprising of 182 markers and 11 major linkage groups, that correspond to the 11 previously identified chromosomes. The genetic map provides 90% probability of a marker being 11 cM from any given locus. Its comparison to the available physical map has revealed the average physical size of a recombination unit to be 15.6 Kb/cM. The genetic map coupled with the genome sequence and the ability to undertake crosses presents a new approach to identifying genes relevant to the disease and its prevention in this important pathogen through forward genetic analysis and positional cloning.


Subject(s)
Genome, Protozoan , Trypanosoma brucei brucei/genetics , Animals , Chromosome Mapping , Chromosomes , Genetic Linkage , Physical Chromosome Mapping
SELECTION OF CITATIONS
SEARCH DETAIL
...