Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Neurorehabil Neural Repair ; 37(6): 367-373, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36226541

ABSTRACT

BACKGROUND: Vagus Nerve Stimulation (VNS) paired with rehabilitation improved upper extremity impairment and function in a recent pivotal, randomized, triple-blind, sham-controlled trial in people with chronic arm weakness after stroke. OBJECTIVE: We aimed to determine whether treatment effects varied across candidate subgroups, such as younger age or less injury. METHODS: Participants were randomized to receive rehabilitation paired with active VNS or rehabilitation paired with sham stimulation (Control). The primary outcome was the change in impairment measured by the Fugl-Meyer Assessment Upper Extremity (FMA-UE) score on the first day after completion of 6-weeks in-clinic therapy. We explored the effect of VNS treatment by sex, age (≥62 years), time from stroke (>2 years), severity (baseline FMA-UE score >34), paretic side of body, country of enrollment (USA vs UK) and presence of cortical involvement of the index infarction. We assessed whether there was any interaction with treatment. FINDINGS: The primary outcome increased by 5.0 points (SD 4.4) in the VNS group and by 2.4 points (SD 3.8) in the Control group (P = .001, between group difference 2.6, 95% CI 1.03-4.2). The between group difference was similar across all subgroups and there were no significant treatment interactions. There was no important difference in rates of adverse events across subgroups. CONCLUSION: The response was similar across subgroups examined. The findings suggest that the effects of paired VNS observed in the VNS-REHAB trial are likely to be consistent in wide range of stroke survivors with moderate to severe upper extremity impairment.


Subject(s)
Ischemic Stroke , Motor Disorders , Stroke Rehabilitation , Stroke , Vagus Nerve Stimulation , Humans , Middle Aged , Motor Disorders/etiology , Stroke/complications , Stroke/therapy , Upper Extremity , Recovery of Function , Treatment Outcome
2.
BMJ Open ; 11(5): e042081, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035087

ABSTRACT

OBJECTIVE: To determine whether robot-assisted training is cost-effective compared with an enhanced upper limb therapy (EULT) programme or usual care. DESIGN: Economic evaluation within a randomised controlled trial. SETTING: Four National Health Service (NHS) centres in the UK: Queen's Hospital, Barking, Havering and Redbridge University Hospitals NHS Trust; Northwick Park Hospital, London Northwest Healthcare NHS Trust; Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde; and North Tyneside General Hospital, Northumbria Healthcare NHS Foundation Trust. PARTICIPANTS: 770 participants aged 18 years or older with moderate or severe upper limb functional limitation from first-ever stroke. INTERVENTIONS: Participants randomised to one of three programmes provided over a 12-week period: robot-assisted training plus usual care; the EULT programme plus usual care or usual care. MAIN ECONOMIC OUTCOME MEASURES: Mean healthcare resource use; costs to the NHS and personal social services in 2018 pounds; utility scores based on EQ-5D-5L responses and quality-adjusted life years (QALYs). Cost-effectiveness reported as incremental cost per QALY and cost-effectiveness acceptability curves. RESULTS: At 6 months, on average usual care was the least costly option (£3785) followed by EULT (£4451) with robot-assisted training being the most costly (£5387). The mean difference in total costs between the usual care and robot-assisted training groups (£1601) was statistically significant (p<0.001). Mean QALYs were highest for the EULT group (0.23) but no evidence of a difference (p=0.995) was observed between the robot-assisted training (0.21) and usual care groups (0.21). The incremental cost per QALY at 6 months for participants randomised to EULT compared with usual care was £74 100. Cost-effectiveness acceptability curves showed that robot-assisted training was unlikely to be cost-effective and that EULT had a 19% chance of being cost-effective at the £20 000 willingness to pay (WTP) threshold. Usual care was most likely to be cost-effective at all the WTP values considered in the analysis. CONCLUSIONS: The cost-effectiveness analysis suggested that neither robot-assisted training nor EULT, as delivered in this trial, were likely to be cost-effective at any of the cost per QALY thresholds considered. TRIAL REGISTRATION NUMBER: ISRCTN69371850.


Subject(s)
Robotics , Stroke , Cost-Benefit Analysis , Humans , London , Quality of Life , Quality-Adjusted Life Years , State Medicine , Stroke/therapy , Upper Extremity
3.
Lancet ; 397(10284): 1545-1553, 2021 04 24.
Article in English | MEDLINE | ID: mdl-33894832

ABSTRACT

BACKGROUND: Long-term loss of arm function after ischaemic stroke is common and might be improved by vagus nerve stimulation paired with rehabilitation. We aimed to determine whether this strategy is a safe and effective treatment for improving arm function after stroke. METHODS: In this pivotal, randomised, triple-blind, sham-controlled trial, done in 19 stroke rehabilitation services in the UK and the USA, participants with moderate-to-severe arm weakness, at least 9 months after ischaemic stroke, were randomly assigned (1:1) to either rehabilitation paired with active vagus nerve stimulation (VNS group) or rehabilitation paired with sham stimulation (control group). Randomisation was done by ResearchPoint Global (Austin, TX, USA) using SAS PROC PLAN (SAS Institute Software, Cary, NC, USA), with stratification by region (USA vs UK), age (≤30 years vs >30 years), and baseline Fugl-Meyer Assessment-Upper Extremity (FMA-UE) score (20-35 vs 36-50). Participants, outcomes assessors, and treating therapists were masked to group assignment. All participants were implanted with a vagus nerve stimulation device. The VNS group received 0·8 mA, 100 µs, 30 Hz stimulation pulses, lasting 0·5 s. The control group received 0 mA pulses. Participants received 6 weeks of in-clinic therapy (three times per week; total of 18 sessions) followed by a home exercise programme. The primary outcome was the change in impairment measured by the FMA-UE score on the first day after completion of in-clinic therapy. FMA-UE response rates were also assessed at 90 days after in-clinic therapy (secondary endpoint). All analyses were by intention to treat. This trial is registered at ClinicalTrials.gov, NCT03131960. FINDINGS: Between Oct 2, 2017, and Sept 12, 2019, 108 participants were randomly assigned to treatment (53 to the VNS group and 55 to the control group). 106 completed the study (one patient for each group did not complete the study). On the first day after completion of in-clinic therapy, the mean FMA-UE score increased by 5·0 points (SD 4·4) in the VNS group and by 2·4 points (3·8) in the control group (between group difference 2·6, 95% CI 1·0-4·2, p=0·0014). 90 days after in-clinic therapy, a clinically meaningful response on the FMA-UE score was achieved in 23 (47%) of 53 patients in the VNS group versus 13 (24%) of 55 patients in the control group (between group difference 24%, 6-41; p=0·0098). There was one serious adverse event related to surgery (vocal cord paresis) in the control group. INTERPRETATION: Vagus nerve stimulation paired with rehabilitation is a novel potential treatment option for people with long-term moderate-to-severe arm impairment after ischaemic stroke. FUNDING: MicroTransponder.


Subject(s)
Implantable Neurostimulators/adverse effects , Ischemic Stroke/complications , Stroke Rehabilitation/methods , Upper Extremity/physiopathology , Vagus Nerve Stimulation/instrumentation , Aged , Case-Control Studies , Combined Modality Therapy/methods , Exercise Therapy/methods , Female , Humans , Ischemic Stroke/rehabilitation , Male , Middle Aged , Outcome Assessment, Health Care , Paresis/etiology , Recovery of Function/physiology , Treatment Outcome , Vocal Cord Paralysis/epidemiology
4.
Clin Rehabil ; 35(1): 119-134, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32914639

ABSTRACT

OBJECTIVE: To report the fidelity of the enhanced upper limb therapy programme within the Robot-Assisted Training for the Upper Limb after stroke (RATULS) randomized controlled trial, the types of goals selected and the proportion of goals achieved. DESIGN: Descriptive analysis of data on fidelity, goal selection and achievement from an intervention group within a randomized controlled trial. SETTING: Out-patient stroke rehabilitation within four UK NHS centres. SUBJECTS: 259 participants with moderate-severe upper limb activity limitation (Action Research Arm Test 0-39) between one week and five years post first stroke. INTERVENTION: The enhanced upper limb therapy programme aimed to provide 36 one-hour sessions, including 45 minutes of face-to-face therapy focusing on personal goals, over 12 weeks. RESULTS: 7877/9324 (84%) sessions were attended; a median of 34 [IQR 29-36] per participant. A median of 127 [IQR 70-190] repetitions were achieved per participant per session attended. Based upon the Canadian Occupational Performance Measure, goal categories were: self-care 1449/2664 (54%); productivity 374/2664 (14%); leisure 180/2664 (7%) and 'other' 661/2664 (25%). For the 2051/2664 goals for which data were available, 1287 (51%) were achieved, ranging between 27% by participants more than 12 months post stroke with baseline Action Research Arm Test scores 0-7, and 88% by those less than three months after stroke with scores 8-19. CONCLUSIONS: Intervention fidelity was high. Goals relating to self-care were most commonly selected. The proportion of goals achieved varied, depending on time post stroke and baseline arm activity limitation.


Subject(s)
Physical Therapy Modalities , Robotics , Stroke Rehabilitation , Stroke/therapy , Upper Extremity , Adult , Aged , Female , Goals , Humans , Male , Middle Aged , Motivation , Stroke/physiopathology , Stroke/psychology , Treatment Outcome
5.
Psychoradiology ; 1(2): 73-87, 2021 Jun.
Article in English | MEDLINE | ID: mdl-38665359

ABSTRACT

Background: Motor adaptation relies on error-based learning for accurate movements in changing environments. However, the neurophysiological mechanisms driving individual differences in performance are unclear. Transcranial magnetic stimulation (TMS)-evoked potential can provide a direct measure of cortical excitability. Objective: To investigate cortical excitability as a predictor of motor learning and motor adaptation in a robot-mediated forcefield. Methods: A group of 15 right-handed healthy participants (mean age 23 years) performed a robot-mediated forcefield perturbation task. There were two conditions: unperturbed non-adaptation and perturbed adaptation. TMS was applied in the resting state at baseline and following motor adaptation over the contralateral primary motor cortex (left M1). Electroencephalographic (EEG) activity was continuously recorded, and cortical excitability was measured by TMS-evoked potential (TEP). Motor learning was quantified by the motor learning index. Results: Larger error-related negativity (ERN) in fronto-central regions was associated with improved motor performance as measured by a reduction in trajectory errors. Baseline TEP N100 peak amplitude predicted motor learning (P = 0.005), which was significantly attenuated relative to baseline (P = 0.0018) following motor adaptation. Conclusions: ERN reflected the formation of a predictive internal model adapted to the forcefield perturbation. Attenuation in TEP N100 amplitude reflected an increase in cortical excitability with motor adaptation reflecting neuroplastic changes in the sensorimotor cortex. TEP N100 is a potential biomarker for predicting the outcome in robot-mediated therapy and a mechanism to investigate psychomotor abnormalities in depression.

6.
Health Technol Assess ; 24(54): 1-232, 2020 10.
Article in English | MEDLINE | ID: mdl-33140719

ABSTRACT

BACKGROUND: Loss of arm function is common after stroke. Robot-assisted training may improve arm outcomes. OBJECTIVE: The objectives were to determine the clinical effectiveness and cost-effectiveness of robot-assisted training, compared with an enhanced upper limb therapy programme and with usual care. DESIGN: This was a pragmatic, observer-blind, multicentre randomised controlled trial with embedded health economic and process evaluations. SETTING: The trial was set in four NHS trial centres. PARTICIPANTS: Patients with moderate or severe upper limb functional limitation, between 1 week and 5 years following first stroke, were recruited. INTERVENTIONS: Robot-assisted training using the Massachusetts Institute of Technology-Manus robotic gym system (InMotion commercial version, Interactive Motion Technologies, Inc., Watertown, MA, USA), an enhanced upper limb therapy programme comprising repetitive functional task practice, and usual care. MAIN OUTCOME MEASURES: The primary outcome was upper limb functional recovery 'success' (assessed using the Action Research Arm Test) at 3 months. Secondary outcomes at 3 and 6 months were the Action Research Arm Test results, upper limb impairment (measured using the Fugl-Meyer Assessment), activities of daily living (measured using the Barthel Activities of Daily Living Index), quality of life (measured using the Stroke Impact Scale), resource use costs and quality-adjusted life-years. RESULTS: A total of 770 participants were randomised (robot-assisted training, n = 257; enhanced upper limb therapy, n = 259; usual care, n = 254). Upper limb functional recovery 'success' was achieved in the robot-assisted training [103/232 (44%)], enhanced upper limb therapy [118/234 (50%)] and usual care groups [85/203 (42%)]. These differences were not statistically significant; the adjusted odds ratios were as follows: robot-assisted training versus usual care, 1.2 (98.33% confidence interval 0.7 to 2.0); enhanced upper limb therapy versus usual care, 1.5 (98.33% confidence interval 0.9 to 2.5); and robot-assisted training versus enhanced upper limb therapy, 0.8 (98.33% confidence interval 0.5 to 1.3). The robot-assisted training group had less upper limb impairment (as measured by the Fugl-Meyer Assessment motor subscale) than the usual care group at 3 and 6 months. The enhanced upper limb therapy group had less upper limb impairment (as measured by the Fugl-Meyer Assessment motor subscale), better mobility (as measured by the Stroke Impact Scale mobility domain) and better performance in activities of daily living (as measured by the Stroke Impact Scale activities of daily living domain) than the usual care group, at 3 months. The robot-assisted training group performed less well in activities of daily living (as measured by the Stroke Impact Scale activities of daily living domain) than the enhanced upper limb therapy group at 3 months. No other differences were clinically important and statistically significant. Participants found the robot-assisted training and the enhanced upper limb therapy group programmes acceptable. Neither intervention, as provided in this trial, was cost-effective at current National Institute for Health and Care Excellence willingness-to-pay thresholds for a quality-adjusted life-year. CONCLUSIONS: Robot-assisted training did not improve upper limb function compared with usual care. Although robot-assisted training improved upper limb impairment, this did not translate into improvements in other outcomes. Enhanced upper limb therapy resulted in potentially important improvements on upper limb impairment, in performance of activities of daily living, and in mobility. Neither intervention was cost-effective. FUTURE WORK: Further research is needed to find ways to translate the improvements in upper limb impairment seen with robot-assisted training into improvements in upper limb function and activities of daily living. Innovations to make rehabilitation programmes more cost-effective are required. LIMITATIONS: Pragmatic inclusion criteria led to the recruitment of some participants with little prospect of recovery. The attrition rate was higher in the usual care group than in the robot-assisted training or enhanced upper limb therapy groups, and differential attrition is a potential source of bias. Obtaining accurate information about the usual care that participants were receiving was a challenge. TRIAL REGISTRATION: Current Controlled Trials ISRCTN69371850. FUNDING: This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 24, No. 54. See the NIHR Journals Library website for further project information.


Many people who have arm weakness following a stroke feel that insufficient attention is paid by rehabilitation services to recovery of their arm. Unfortunately, it is currently unclear how best to provide rehabilitation to optimise recovery, but robot-assisted training and therapy programmes that focus on practising functional tasks are promising and require further evaluation. The Robot-Assisted Training for the Upper Limb after Stroke (RATULS) trial evaluated three approaches to rehabilitation for people with moderate or severe difficulty using their arm. These approaches were robot-assisted training using the Massachusetts Institute of Technology-Manus robotic gym system (InMotion commercial version, Interactive Motion Technologies, Inc., Watertown, MA, USA), an enhanced upper limb therapy programme based on repetitive practice of functional tasks and usual care. Robot-assisted training and the enhanced upper limb therapy programme were provided in an outpatient setting for 45 minutes per session, three times per week, for 12 weeks, in addition to usual care. The Massachusetts Institute of Technology-Manus robotic gym system was selected as it was felt to be the best available technology. The participant sits at a table, places their affected arm onto the Massachusetts Institute of Technology-Manus arm support and attempts to move their arm to play a game on the computer screen. Movements are assisted by the Massachusetts Institute of Technology-Manus if the patient cannot perform the movements themselves. The results of the RATULS trial show that robot-assisted training did not result in additional improvement in stroke survivors' arm use when compared with the enhanced upper limb therapy programme or usual care. Stroke survivors who received enhanced upper limb therapy experienced meaningful improvements in undertaking activities of daily living, when compared with those participants who received either robot-assisted training or usual care. Participants who received enhanced upper limb therapy also experienced benefits in their mobility, compared with usual care participants. Participants and therapists found both therapies acceptable, and described various benefits. A health economic analysis found that neither robot-assisted training nor the enhanced upper limb therapy programme was a cost-effective treatment for the NHS.


Subject(s)
Robotics , Stroke Rehabilitation/instrumentation , Stroke Rehabilitation/methods , Upper Extremity/physiopathology , Activities of Daily Living , Adult , Aged , Cost-Benefit Analysis , Female , Humans , Male , Middle Aged , Models, Economic , Quality of Life , Quality-Adjusted Life Years , Recovery of Function , Severity of Illness Index , Single-Blind Method , State Medicine , Stroke Rehabilitation/economics , Technology Assessment, Biomedical , United Kingdom
7.
Front Hum Neurosci ; 14: 226, 2020.
Article in English | MEDLINE | ID: mdl-32760259

ABSTRACT

Ischemic stroke of the middle cerebral artery (MCA), a major brain vessel that supplies the primary motor and premotor cortex, is one of the most common causes for severe upper limb impairment. Currently available motor rehabilitation training largely lacks satisfying efficacy with over 70% of stroke survivors showing residual upper limb dysfunction. Motor imagery-based functional magnetic resonance imaging neurofeedback (fMRI-NF) has been suggested as a potential therapeutic technique to improve motor impairment in stroke survivors. In this preregistered proof-of-concept study (https://osf.io/y69jc/), we translated graded fMRI-NF training, a new paradigm that we have previously studied in healthy participants, to first-time MCA stroke survivors with residual mild to severe impairment of upper limb motor function. Neurofeedback was provided from the supplementary motor area (SMA) targeting two different neurofeedback target levels (low and high). We hypothesized that MCA stroke survivors will show (1) sustained SMA-region of interest (ROI) activation and (2) a difference in SMA-ROI activation between low and high neurofeedback conditions during graded fMRI-NF training. At the group level, we found only anecdotal evidence for these preregistered hypotheses. At the individual level, we found anecdotal to moderate evidence for the absence of the hypothesized graded effect for most subjects. These null findings are relevant for future attempts to employ fMRI-NF training in stroke survivors. The study introduces a Bayesian sequential sampling plan, which incorporates prior knowledge, yielding higher sensitivity. The sampling plan was preregistered together with a priori hypotheses and all planned analysis before data collection to address potential publication/researcher biases. Unforeseen difficulties in the translation of our paradigm to a clinical setting required some deviations from the preregistered protocol. We explicitly detail these changes, discuss the accompanied additional challenges that can arise in clinical neurofeedback studies, and formulate recommendations for how these can be addressed. Taken together, this work provides new insights about the feasibility of motor imagery-based graded fMRI-NF training in MCA stroke survivors and serves as a first example for comprehensive study preregistration of an (fMRI) neurofeedback experiment.

9.
Lancet ; 394(10192): 51-62, 2019 07 06.
Article in English | MEDLINE | ID: mdl-31128926

ABSTRACT

BACKGROUND: Loss of arm function is a common problem after stroke. Robot-assisted training might improve arm function and activities of daily living. We compared the clinical effectiveness of robot-assisted training using the MIT-Manus robotic gym with an enhanced upper limb therapy (EULT) programme based on repetitive functional task practice and with usual care. METHODS: RATULS was a pragmatic, multicentre, randomised controlled trial done at four UK centres. Stroke patients aged at least 18 years with moderate or severe upper limb functional limitation, between 1 week and 5 years after their first stroke, were randomly assigned (1:1:1) to receive robot-assisted training, EULT, or usual care. Robot-assisted training and EULT were provided for 45 min, three times per week for 12 weeks. Randomisation was internet-based using permuted block sequences. Treatment allocation was masked from outcome assessors but not from participants or therapists. The primary outcome was upper limb function success (defined using the Action Research Arm Test [ARAT]) at 3 months. Analyses were done on an intention-to-treat basis. This study is registered with the ISRCTN registry, number ISRCTN69371850. FINDINGS: Between April 14, 2014, and April 30, 2018, 770 participants were enrolled and randomly assigned to either robot-assisted training (n=257), EULT (n=259), or usual care (n=254). The primary outcome of ARAT success was achieved by 103 (44%) of 232 patients in the robot-assisted training group, 118 (50%) of 234 in the EULT group, and 85 (42%) of 203 in the usual care group. Compared with usual care, robot-assisted training (adjusted odds ratio [aOR] 1·17 [98·3% CI 0·70-1·96]) and EULT (aOR 1·51 [0·90-2·51]) did not improve upper limb function; the effects of robot-assisted training did not differ from EULT (aOR 0·78 [0·48-1·27]). More participants in the robot-assisted training group (39 [15%] of 257) and EULT group (33 [13%] of 259) had serious adverse events than in the usual care group (20 [8%] of 254), but none were attributable to the intervention. INTERPRETATION: Robot-assisted training and EULT did not improve upper limb function after stroke compared with usual care for patients with moderate or severe upper limb functional limitation. These results do not support the use of robot-assisted training as provided in this trial in routine clinical practice. FUNDING: National Institute for Health Research Health Technology Assessment Programme.


Subject(s)
Robotics/education , Stroke Rehabilitation/instrumentation , Upper Extremity/physiopathology , Aged , Female , Humans , Male , Middle Aged , Recovery of Function , Treatment Outcome , United Kingdom
10.
Rev Neurosci ; 30(6): 605-623, 2019 07 26.
Article in English | MEDLINE | ID: mdl-30768425

ABSTRACT

Recovery from a stroke is a dynamic time-dependent process, in which the central nervous system reorganises to accommodate for the impact of the injury. The purpose of this paper is to review recent longitudinal studies of changes in brain connectivity after stroke. A systematic review of research papers reporting functional or effective connectivity at two or more time points in stroke patients was conducted. Stroke leads to an early reduction of connectivity in the motor network. With recovery time, the connectivity increases and can reach the same levels as in healthy participants. The increase in connectivity is correlated with functional motor gains. A new, more randomised pattern of connectivity may then emerge in the longer term. In some instances, a pattern of increased connectivity even higher than in healthy controls can be observed, and is related either to a specific time point or to a specific neural structure. Rehabilitation interventions can help improve connectivity between specific regions. Moreover, motor network connectivity undergoes reorganisation during recovery from a stroke and can be related to behavioural recovery. A detailed analysis of changes in connectivity pattern may enable a better understanding of adaptation to a stroke and how compensatory mechanisms in the brain may be supported by rehabilitation.


Subject(s)
Brain/physiopathology , Connectome , Recovery of Function , Stroke/physiopathology , Animals , Brain/diagnostic imaging , Humans , Stroke/diagnostic imaging , Stroke/therapy , Stroke Rehabilitation
11.
Neuroimage ; 184: 36-44, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30205210

ABSTRACT

There is increasing interest in exploring the use of functional MRI neurofeedback (fMRI-NF) as a therapeutic technique for a range of neurological conditions such as stroke and Parkinson's disease (PD). One main therapeutic potential of fMRI-NF is to enhance volitional control of damaged or dysfunctional neural nodes and networks via a closed-loop feedback model using mental imagery as the catalyst of self-regulation. The choice of target node/network and direction of regulation (increase or decrease activity) are central design considerations in fMRI-NF studies. Whilst it remains unclear whether the primary motor cortex (M1) can be activated during motor imagery, the supplementary motor area (SMA) has been robustly activated during motor imagery. Such differences in the regulation potential between primary and supplementary motor cortex are important because these areas can be differentially affected by a stroke or PD, and the choice of fMRI-NF target and grade of self-regulation of activity likely have substantial influence on the clinical effects and cost effectiveness of NF-based interventions. In this study we therefore investigated firstly whether healthy subjects would be able to achieve self-regulation of the hand-representation areas of M1 and the SMA using fMRI-NF training. There was a significant decrease in M1 neural activity during fMRI-NF, whereas SMA neural activity was increased, albeit not with the predicated graded effect. This study has important implications for fMRI-NF protocols that employ motor imagery to modulate activity in specific target regions of the brain and to determine how they may be tailored for neurorehabilitation.


Subject(s)
Imagination , Magnetic Resonance Imaging , Motor Cortex/physiology , Neurofeedback , Adult , Brain Mapping , Female , Humans , Kinesthesis , Male , Self-Control , Young Adult
12.
J Neuroeng Rehabil ; 15(1): 11, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29486775

ABSTRACT

BACKGROUND: Gait impairments during real-world locomotion are common in neurological diseases. However, very little is currently known about the neural correlates of walking in the real world and on which regions of the brain are involved in regulating gait stability and performance. As a first step to understanding how neural control of gait may be impaired in neurological conditions such as Parkinson's disease, we investigated how regional brain activation might predict walking performance in the urban environment and whilst engaging with secondary tasks in healthy subjects. METHODS: We recorded gait characteristics including trunk acceleration and brain activation in 14 healthy young subjects whilst they walked around the university campus freely (single task), while conversing with the experimenter and while texting with their smartphone. Neural spectral power density (PSD) was evaluated in three brain regions of interest, namely the pre-frontal cortex (PFC) and bilateral posterior parietal cortex (right/left PPC). We hypothesized that specific regional neural activation would predict trunk acceleration data obtained during the different walking conditions. RESULTS: Vertical trunk acceleration was predicted by gait velocity and left PPC theta (4-7 Hz) band PSD in single-task walking (R-squared = 0.725, p = 0.001) and by gait velocity and left PPC alpha (8-12 Hz) band PSD in walking while conversing (R-squared = 0.727, p = 0.001). Medio-lateral trunk acceleration was predicted by left PPC beta (15-25 Hz) band PSD when walking while texting (R-squared = 0.434, p = 0.010). CONCLUSIONS: We suggest that the left PPC may be involved in the processes of sensorimotor integration and gait control during walking in real-world conditions. Frequency-specific coding was operative in different dual tasks and may be developed as biomarkers of gait deficits in neurological conditions during performance of these types of, now commonly undertaken, dual tasks.


Subject(s)
Brain/physiology , Gait/physiology , Psychomotor Performance/physiology , Adult , Brain Mapping , Female , Humans , Male
13.
Neuroimage ; 174: 494-503, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29588227

ABSTRACT

Motor deficits are common outcomes of neurological conditions such as stroke. In order to design personalised motor rehabilitation programmes such as robot-assisted therapy, it would be advantageous to predict how a patient might respond to such treatment. Spontaneous neural activity has been observed to predict differences in the ability to learn a new motor behaviour in both healthy and stroke populations. This study investigated whether spontaneous resting-state functional connectivity could predict the degree of motor adaptation of right (dominant) upper limb reaching in response to a robot-mediated force field. Spontaneous neural activity was measured using resting-state electroencephalography (EEG) in healthy adults before a single session of motor adaptation. The degree of beta frequency (ß; 15-25 Hz) resting-state functional connectivity between contralateral electrodes overlying the left primary motor cortex (M1) and the anterior prefrontal cortex (aPFC) could predict the subsequent degree of motor adaptation. This result provides novel evidence for the functional significance of resting-state synchronization dynamics in predicting the degree of motor adaptation in a healthy sample. This study constitutes a promising first step towards the identification of patients who will likely gain most from using robot-mediated upper limb rehabilitation training based on simple measures of spontaneous neural activity.


Subject(s)
Adaptation, Physiological , Brain Waves , Motor Activity , Motor Cortex/physiology , Prefrontal Cortex/physiology , Robotics , Adult , Arm/physiology , Biomechanical Phenomena , Electroencephalography , Female , Humans , Male , Neural Pathways/physiology , Young Adult
14.
Front Hum Neurosci ; 11: 460, 2017.
Article in English | MEDLINE | ID: mdl-28959199

ABSTRACT

Recent developments in mobile brain-body imaging (MoBI) technologies have enabled studies of human locomotion where subjects are able to move freely in more ecologically valid scenarios. In this study, MoBI was employed to describe the behavioral and neurophysiological aspects of three different commonly occurring walking conditions in healthy adults. The experimental conditions were self-paced walking, walking while conversing with a friend and lastly walking while texting with a smartphone. We hypothesized that gait performance would decrease with increased cognitive demands and that condition-specific neural activation would involve condition-specific brain areas. Gait kinematics and high density electroencephalography (EEG) were recorded whilst walking around a university campus. Conditions with dual tasks were accompanied by decreased gait performance. Walking while conversing was associated with an increase of theta (θ) and beta (ß) neural power in electrodes located over left-frontal and right parietal regions, whereas walking while texting was associated with a decrease of ß neural power in a cluster of electrodes over the frontal-premotor and sensorimotor cortices when compared to walking whilst conversing. In conclusion, the behavioral "signatures" of common real-life activities performed outside the laboratory environment were accompanied by differing frequency-specific neural "biomarkers". The current findings encourage the study of the neural biomarkers of disrupted gait control in neurologically impaired patients.

15.
Trials ; 18(1): 340, 2017 07 20.
Article in English | MEDLINE | ID: mdl-28728602

ABSTRACT

BACKGROUND: Loss of arm function is a common and distressing consequence of stroke. We describe the protocol for a pragmatic, multicentre randomised controlled trial to determine whether robot-assisted training improves upper limb function following stroke. METHODS/DESIGN: Study design: a pragmatic, three-arm, multicentre randomised controlled trial, economic analysis and process evaluation. SETTING: NHS stroke services. PARTICIPANTS: adults with acute or chronic first-ever stroke (1 week to 5 years post stroke) causing moderate to severe upper limb functional limitation. Randomisation groups: 1. Robot-assisted training using the InMotion robotic gym system for 45 min, three times/week for 12 weeks 2. Enhanced upper limb therapy for 45 min, three times/week for 12 weeks 3. Usual NHS care in accordance with local clinical practice Randomisation: individual participant randomisation stratified by centre, time since stroke, and severity of upper limb impairment. PRIMARY OUTCOME: upper limb function measured by the Action Research Arm Test (ARAT) at 3 months post randomisation. SECONDARY OUTCOMES: upper limb impairment (Fugl-Meyer Test), activities of daily living (Barthel ADL Index), quality of life (Stroke Impact Scale, EQ-5D-5L), resource use, cost per quality-adjusted life year and adverse events, at 3 and 6 months. Blinding: outcomes are undertaken by blinded assessors. Economic analysis: micro-costing and economic evaluation of interventions compared to usual NHS care. A within-trial analysis, with an economic model will be used to extrapolate longer-term costs and outcomes. Process evaluation: semi-structured interviews with participants and professionals to seek their views and experiences of the rehabilitation that they have received or provided, and factors affecting the implementation of the trial. SAMPLE SIZE: allowing for 10% attrition, 720 participants provide 80% power to detect a 15% difference in successful outcome between each of the treatment pairs. Successful outcome definition: baseline ARAT 0-7 must improve by 3 or more points; baseline ARAT 8-13 improve by 4 or more points; baseline ARAT 14-19 improve by 5 or more points; baseline ARAT 20-39 improve by 6 or more points. DISCUSSION: The results from this trial will determine whether robot-assisted training improves upper limb function post stroke. TRIAL REGISTRATION: ISRCTN, identifier: ISRCTN69371850 . Registered 4 October 2013.


Subject(s)
Exercise Therapy , Robotics , Stroke Rehabilitation/methods , Stroke/therapy , Upper Extremity/innervation , Biomechanical Phenomena , Clinical Protocols , Cost-Benefit Analysis , Disability Evaluation , Exercise Therapy/economics , Health Care Costs , Humans , Models, Economic , Quality of Life , Quality-Adjusted Life Years , Recovery of Function , Research Design , Robotics/economics , State Medicine/economics , Stroke/diagnosis , Stroke/economics , Stroke/physiopathology , Stroke Rehabilitation/economics , Time Factors , Treatment Outcome , United Kingdom
16.
NeuroRehabilitation ; 41(1): 17-29, 2017.
Article in English | MEDLINE | ID: mdl-28527223

ABSTRACT

BACKGROUND: Muscle co-contraction is a strategy of increasing movement accuracy and stability employed in dealing with force perturbation of movement. It is often seen in neuropathological populations. The direction of movement influences the pattern of co-contraction, but not all movements are easily achievable for populations with motor deficits. Manipulating the direction of the force instead, may be a promising rehabilitation protocol to train movement with use of a co-contraction reduction strategy. Force field learning paradigms provide a well described procedure to evoke and test muscle co-contraction. OBJECTIVE: The aim of this study was to test the muscle co-contraction pattern in a wide range of arm muscles in different force-field directions utilising a robot-mediated force field learning paradigm of motor adaptation. METHOD: Forty-two participants volunteered to participate in a study utilising robot-mediated force field motor adaptation paradigm with a clockwise or counter-clockwise force field. Kinematics and surface electromyography (EMG) of eight arm muscles were measured. RESULTS: Both muscle activation and co-contraction was earlier and stronger in flexors in the clockwise condition and in extensors in the counter-clockwise condition. CONCLUSIONS: Manipulating the force field direction leads to changes in the pattern of muscle co-contraction.


Subject(s)
Electromyography/methods , Learning , Muscle Contraction , Muscle, Skeletal/physiology , Robotics/methods , Adaptation, Physiological , Adult , Biomechanical Phenomena , Female , Humans , Male , Movement
17.
Front Behav Neurosci ; 10: 111, 2016.
Article in English | MEDLINE | ID: mdl-27375451

ABSTRACT

OBJECTIVE: Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback (NF) uses feedback of the patient's own brain activity to self-regulate brain networks which in turn could lead to a change in behavior and clinical symptoms. The objective was to determine the effect of NF and motor training (MOT) alone on motor and non-motor functions in Parkinson's Disease (PD) in a 10-week small Phase I randomized controlled trial. METHODS: Thirty patients with Parkinson's disease (PD; Hoehn and Yahr I-III) and no significant comorbidity took part in the trial with random allocation to two groups. Group 1 (NF: 15 patients) received rt-fMRI-NF with MOT. Group 2 (MOT: 15 patients) received MOT alone. The primary outcome measure was the Movement Disorder Society-Unified PD Rating Scale-Motor scale (MDS-UPDRS-MS), administered pre- and post-intervention "off-medication". The secondary outcome measures were the "on-medication" MDS-UPDRS, the PD Questionnaire-39, and quantitative motor assessments after 4 and 10 weeks. RESULTS: Patients in the NF group were able to upregulate activity in the supplementary motor area (SMA) by using motor imagery. They improved by an average of 4.5 points on the MDS-UPDRS-MS in the "off-medication" state (95% confidence interval: -2.5 to -6.6), whereas the MOT group improved only by 1.9 points (95% confidence interval +3.2 to -6.8). The improvement in the intervention group meets the minimal clinically important difference which is also on par with other non-invasive therapies such as repetitive Transcranial Magnetic Stimulation (rTMS). However, the improvement did not differ significantly between the groups. No adverse events were reported in either group. INTERPRETATION: This Phase I study suggests that NF combined with MOT is safe and improves motor symptoms immediately after treatment, but larger trials are needed to explore its superiority over active control conditions.

18.
Curr Opin Neurol ; 29(4): 412-8, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27213774

ABSTRACT

PURPOSE OF REVIEW: Recent developments in functional magnetic resonance imaging (fMRI) have catalyzed a new field of translational neuroscience. Using fMRI to monitor the aspects of task-related changes in neural activation or brain connectivity, investigators can offer feedback of simple or complex neural signals/patterns back to the participant on a quasireal-time basis [real-time-fMRI-based neurofeedback (rt-fMRI-NF)]. Here, we introduce some background methodology of the new developments in this field and give a perspective on how they may be used in neurorehabilitation in the future. RECENT FINDINGS: The development of rt-fMRI-NF has been used to promote self-regulation of activity in several brain regions and networks. In addition, and unlike other noninvasive techniques, rt-fMRI-NF can access specific subcortical regions and in principle any region that can be monitored using fMRI including the cerebellum, brainstem and spinal cord. In Parkinson's disease and stroke, rt-fMRI-NF has been demonstrated to alter neural activity after the self-regulation training was completed and to modify specific behaviours. SUMMARY: Future exploitation of rt-fMRI-NF could be used to induce neuroplasticity in brain networks that are involved in certain neurological conditions. However, currently, the use of rt-fMRI-NF in randomized, controlled clinical trials is in its infancy.


Subject(s)
Brain Diseases/diagnostic imaging , Brain Diseases/rehabilitation , Magnetic Resonance Imaging/methods , Neurofeedback/methods , Neurological Rehabilitation/methods , Brain/diagnostic imaging , Brain/physiology , Brain/physiopathology , Healthy Volunteers , Humans , Neurofeedback/physiology , Neuronal Plasticity/physiology , Parkinson Disease/diagnostic imaging , Parkinson Disease/physiopathology , Parkinson Disease/rehabilitation , Self Care , Stroke/diagnostic imaging , Stroke/physiopathology , Stroke/therapy
19.
Front Physiol ; 7: 668, 2016.
Article in English | MEDLINE | ID: mdl-28119620

ABSTRACT

Adaptation of arm reaching in a novel force field involves co-contraction of upper limb muscles, but it is not known how the co-ordination of multiple muscle activation is orchestrated. We have used intermuscular coherence (IMC) to test whether a coherent intermuscular coupling between muscle pairs is responsible for novel patterns of activation during adaptation of reaching in a force field. Subjects (N = 16) performed reaching trials during a null force field, then during a velocity-dependent force field and then again during a null force field. Reaching trajectory error increased during early adaptation to the force-field and subsequently decreased during later adaptation. Co-contraction in the majority of all possible muscle pairs also increased during early adaptation and decreased during later adaptation. In contrast, IMC increased during later adaptation and only in a subset of muscle pairs. IMC consistently occurred in frequencies between ~40-100 Hz and during the period of arm movement, suggesting that a coherent intermuscular coupling between those muscles contributing to adaptation enable a reduction in wasteful co-contraction and energetic cost during reaching.

20.
J Neuroeng Rehabil ; 12: 81, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26377324

ABSTRACT

Robot-mediated therapy can help improve walking ability in patients following injuries to the central nervous system. However, the efficacy of this treatment varies between patients, and evidence for the mechanisms underlying functional improvements in humans is poor, particularly in terms of neural changes in the spinal cord. Here, we review the recent literature on spinal plasticity induced by robotic-based training in humans and propose recommendations for the measurement of spinal plasticity using robotic devices. Evidence for spinal plasticity in humans following robotic training is limited to the lower limbs. Body weight-supported (BWS) robotic-assisted step training of patients with spinal cord injury (SCI) or stroke patients has been shown to lead to changes in the amplitude and phase modulation of spinal reflex pathways elicited by electrical stimulation or joint rotations. Of particular importance is the finding that, among other changes to the spinal reflex circuitries, BWS robotic-assisted step training in SCI patients resulted in the re-emergence of a physiological phase modulation of the soleus H-reflex during walking. Stretch reflexes elicited by joint rotations constitute a tool of interest to probe spinal circuitry since the technology necessary to produce these perturbations could be integrated as a natural part of robotic devices. Presently, ad-hoc devices with an actuator capable of producing perturbations powerful enough to elicit the reflex are available but are not part of robotic devices used for training purposes. A further development of robotic devices that include the technology to elicit stretch reflexes would allow for the spinal circuitry to be routinely tested as a part of the training and evaluation protocols.


Subject(s)
Brain Injuries/rehabilitation , Lower Extremity , Neuronal Plasticity/physiology , Robotics , Spinal Cord Injuries/rehabilitation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...