Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Prog ; 106(2): 368504231181452, 2023.
Article in English | MEDLINE | ID: mdl-37321662

ABSTRACT

Shallow waterbodies are abundant in Arctic and subarctic landscapes where they provide productive wildlife habitat and hold cultural and socioeconomic importance for Indigenous communities. Their vulnerability to climate-driven hydrological and limnological changes enhances a need for long-term monitoring data capable of tracking aquatic ecosystem responses. Here, we evaluate biological and inferred physicochemical responses associated with a rise in rainfall-generated runoff and increasingly positive lake water balances in Old Crow Flats (OCF), a 5600 km2 thermokarst landscape in northern Yukon. This is achieved by analyzing periphytic diatom community composition in biofilms accrued on artificial-substrate samplers at 14 lakes collected mostly annually during 2008-2019 CE. Results reveal that diatom communities at 10 of the 14 lakes converged toward a composition typical of lakes with rainfall-dominated input waters. These include six of nine lakes that were not initially dominated by rainfall input. The shifts in diatom community composition infer rise of lake-water pH and ionic content, and they reveal that northern shallow lake ecosystems are responsive to climate-driven increases in rainfall. Based on data generated during the 12 -year-long monitoring period, we conclude that lakes located centrally within OCF are most vulnerable to rapid climate-driven hydroecological change due to flat terrain, larger lake surface area, and sparse terrestrial vegetation, which provide less resistance to lake expansion, shoreline erosion, and sudden drainage. This information assists the local Indigenous community and natural resource stewardship agencies to anticipate changes to traditional food sources and inform adaptation options.


Subject(s)
Crows , Diatoms , Animals , Lakes/chemistry , Ecosystem , Yukon Territory , Canada , Water
2.
Article in English | MEDLINE | ID: mdl-29597256

ABSTRACT

The purpose of this study was to establish geospatial and seasonal distributions of West Nile virus vectors in southern Ontario, Canada using historical surveillance data from 2002 to 2014. We set out to produce mosquito abundance prediction surfaces for each of Ontario's thirteen West Nile virus vectors. We also set out to determine whether elevation and proximity to conservation areas and provincial parks, wetlands, and population centres could be used to improve our model. Our results indicated that the data sets for Anopheles quadrimaculatus, Anopheles punctipennis, Anopheles walkeri, Culex salinarius, Culex tarsalis, Ochlerotatus stimulans, and Ochlerotatus triseriatus were not suitable for geospatial modelling because they are randomly distributed throughout Ontario. Spatial prediction surfaces were created for Aedes japonicus and proximity to wetlands, Aedes vexans and proximity to population centres, Culex pipiens/restuans and proximity to population centres, Ochlerotatus canadensis and elevation, and Ochlerotatus trivittatus and proximity to population centres using kriging. Seasonal distributions are presented for all thirteen species. We have identified both when and where vector species are most abundant in southern Ontario. These data have the potential to contribute to a more efficient and focused larvicide program and West Nile virus awareness campaigns.


Subject(s)
Culicidae/virology , Mosquito Vectors , Seasons , West Nile virus , Animals , Ontario , Population Dynamics , Population Surveillance , Spatio-Temporal Analysis
3.
Proc Biol Sci ; 277(1695): 2867-74, 2010 Sep 22.
Article in English | MEDLINE | ID: mdl-20444712

ABSTRACT

The seasonal reproductive cycle of photoperiodic rodents is conceptualized as a series of discrete melatonin-dependent neuroendocrine transitions. Least understood is the springtime restoration of responsiveness to winter-like melatonin signals (breaking of refractoriness) that enables animals to once again respond appropriately to winter photoperiods the following year. This has been posited to require many weeks of long days based on studies employing static photoperiods instead of the annual pattern of continually changing photoperiods under which these mechanisms evolved. Maintaining Siberian hamsters under simulated natural photoperiods, we demonstrate that winter refractoriness is broken within six weeks after the spring equinox. We then test whether a history of natural photoperiod exposure can eliminate the requirement for long-day melatonin signalling. Hamsters pinealectomized at the spring equinox and challenged 10 weeks later with winter melatonin infusions exhibited gonadal regression, indicating that refractoriness was broken. A photostimulatory effect on body weight is first observed in the last four weeks of winter. Thus, the seasonal transition to the summer photosensitive phenotype is triggered prior to the equinox without exposure to long days and is thereafter melatonin-independent. Distinctions between photoperiodic and circannual seasonal organization erode with the incorporation in the laboratory of ecologically relevant day length conditions.


Subject(s)
Melatonin/metabolism , Phodopus/physiology , Photoperiod , Reproduction/physiology , Seasons , Animals , Body Weight , Cricetinae , Gonads/physiology , Male , Pineal Gland/surgery , Signal Transduction , Testis/physiology
4.
J Biol Rhythms ; 23(3): 242-51, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18487416

ABSTRACT

The duration of nocturnal pineal melatonin secretion transduces effects of day length (DL) on the neuroendocrine axis of photoperiodic rodents. Long DLs support reproduction, and short DLs induce testicular regression, followed several months later by spontaneous recrudescence; gonadal regrowth is thought to reflect development of tissue refractoriness to melatonin. In most photoperiodic species, pinealectomy does not diminish reproductive competence in long DLs. Turkish hamsters (Mesocricetus brandti) deviate from this norm: elimination of melatonin secretion in long-day males by pinealectomy or constant light treatment induces testicular regression and subsequently recrudescence; the time course of these gonadal transitions is similar to that observed in males transferred from long to short DLs. In the present study, long-day Turkish hamsters that underwent testicular regression and recrudescence in constant light subsequently were completely unresponsive to the antigonadal effects of short DLs. Other hamsters that manifested testicular regression and recrudescence in short DLs were unresponsive to the antigonadal effects of pinealectomy or constant light. Long-term suppression of melatonin secretion induces a physiological state in Turkish hamsters similar or identical to the neuroendocrine refractoriness produced by short-day melatonin signals (i.e., neural refractoriness to melatonin develops in the absence of circulating melatonin secretion). A melatonin-independent interval timer, which would remain operative in the absence of melatonin during hibernation, may determine the onset of testicular recrudescence in the spring. In this respect, Turkish hamsters differ from most other photoperiodic rodents.


Subject(s)
Melatonin/physiology , Neurosecretory Systems/physiology , Seasons , Animals , Cricetinae , Light , Male , Pineal Gland/physiology , Pineal Gland/surgery
5.
J Biol Rhythms ; 23(2): 160-9, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18375865

ABSTRACT

Short day lengths increase the duration of nocturnal melatonin (Mel) secretion, which induces the winter phenotype in Siberian hamsters. After several months of continued exposure to short days, hamsters spontaneously revert to the spring-summer phenotype. This transition has been attributed to the development of refractoriness of Mel-binding tissues, including the suprachiasmatic nucleus (SCN), to long-duration Mel signals. The SCN of Siberian hamsters is required for the seasonal response to winter-like Mel signals, and becomes refractory to previously effective long-duration Mel signals restricted to this area. Acute Mel treatment phase shifts circadian locomotor rhythms of photosensitive Siberian hamsters, presumably by affecting circadian oscillators in the SCN. We tested whether seasonal refractoriness of the SCN to long-duration Mel signals also renders the circadian system of Siberian hamsters unresponsive to Mel. Males manifesting free-running circadian rhythms in constant dim red light were injected with Mel or vehicle for 5 days on a 23.5-h T-cycle beginning at circadian time 10. Mel injections caused significantly larger phase advances in activity onset than did the saline vehicle, but the magnitude of phase shifts to Mel did not differ between photorefractory and photosensitive hamsters. Similarly, when entrained to a 16-h light/8-h dark photocycle, photorefractory and photosensitive hamsters did not differ in their response to Mel injected 4 h before the onset of the dark phase. Activity onset in Mel-injected hamsters was masked by light but was revealed to be significantly earlier than in vehicle-injected hamsters upon transfer to constant dim red light. The acute effects of melatonin on circadian behavioral rhythms are preserved in photorefractory hamsters.


Subject(s)
Circadian Rhythm/physiology , Light , Melatonin/metabolism , Phodopus/physiology , Animals , Biological Clocks , Cricetinae , Female , Male , Melatonin/administration & dosage , Motor Activity/physiology , Photoperiod , Suprachiasmatic Nucleus/physiology
6.
Am J Physiol Regul Integr Comp Physiol ; 293(1): R413-20, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17491109

ABSTRACT

The timing of puberty is a critical life history trait of short-lived species; spring-born individuals mature rapidly and breed in the season of birth, whereas young born in mid- to late summer delay puberty until the next spring. The cues that govern the transition from rapid to delayed maturation in natural populations remain unknown. To identify ecologically relevant photoperiod cues that control timing of puberty, we monitored nine cohorts of female Siberian hamsters (Phodopus sungorus) born every 2 wk from 4 wk before to 12 wk after the summer solstice in a simulated natural photoperiod (SNP). Hamsters born by the summer solstice underwent rapid somatic growth and achieved puberty that summer; among females born 2-4 wk after the solstice, some delayed puberty by many weeks, whereas others manifested early puberty. Hamsters born 6 or more weeks after the solstice generally delayed puberty until the following spring. The transition from accelerated to delayed pubertal development in the SNP occurred at day lengths that induce early puberty when presented as static photoperiods. Despite differences in timing of birth and timing of puberty, fall and subsequent spring seasonal events occurred at similar calendar dates in all cohorts. We found no evidence that prenatal photoperiod history influenced postnatal development of female hamsters. Considered together with a parallel study on males, the present findings point to sex differences in responsiveness to natural photoperiod variations. In both sexes, incrementally changing photoperiods exert a strong organizing effect on seasonal rhythms.


Subject(s)
Photoperiod , Seasons , Sexual Maturation/physiology , Aging/physiology , Animals , Body Weight/physiology , Cricetinae , Female , Phodopus , Pregnancy , Vagina/growth & development , Vagina/physiology
7.
Am J Physiol Regul Integr Comp Physiol ; 293(1): R402-12, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17428890

ABSTRACT

Photoperiodism research has relied on static day lengths and abrupt transitions between long and short days to characterize the signals that drive seasonal rhythms. To identify ecologically relevant critical day lengths and to test the extent to which naturally changing day lengths synchronize important developmental events, we monitored nine cohorts of male Siberian hamsters (Phodopus sungorus) born every 2 wk from 4 wk before to 12 wk after the summer solstice in a simulated natural photoperiod (SNP). SNP hamsters born from 4 wk before to 2 wk after the solstice underwent rapid somatic and gonadal growth; among those born 4-6 wk after the solstice, some delayed puberty by many weeks, whereas others manifested early puberty. Hamsters born eight or more weeks after the solstice failed to undergo early testicular development. The transition to delayed development occurred at long day lengths, which induce early puberty when presented as static photoperiods. The first animals to delay puberty may do so predominantly on the basis of postnatal decreases in day length, whereas in later cohorts, a comparison of postnatal day length to gestational day length may contribute to arrested development. Despite differences in timing of birth and timing of puberty, autumn gonadal regression and spring gonadal and somatic growth occurred at similar calendar dates in all cohorts. Incrementally changing photoperiods exert a strong organizing effect on seasonal rhythms by providing hamsters with a richer source of environmental timing cues than are available in simple static day lengths.


Subject(s)
Photoperiod , Seasons , Testis/growth & development , Aging/physiology , Animals , Body Weight/physiology , Circadian Rhythm/physiology , Cricetinae , Female , Growth/physiology , Male , Motor Activity/physiology , Phodopus , Pregnancy , Prenatal Exposure Delayed Effects , Sexual Maturation/physiology , Testis/anatomy & histology , Weight Gain/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...