Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 351: 46-56, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29775649

ABSTRACT

Cardiac fibroblasts (CF) are key cells for maintaining extracellular matrix (ECM) protein homeostasis in the heart, and for cardiac repair through CF-to-cardiac myofibroblast (CMF) differentiation. Additionally, CF play an important role in the inflammatory process after cardiac injury, and they express Toll like receptor 4 (TLR4), B1 and B2 bradykinin receptors (B1R and B2R) which are important in the inflammatory response. B1R and B2R are induced by proinflammatory cytokines and their activation by bradykinin (BK: B2R agonist) or des-arg-kallidin (DAKD: B1R agonist), induces NO and PGI2 production which is key for reducing collagen I levels. However, whether TLR4 activation regulates bradykinin receptor expression remains unknown. CF were isolated from human, neonatal rat and adult mouse heart. B1R mRNA expression was evaluated by qRT-PCR, whereas B1R, collagen, COX-2 and iNOS protein levels were evaluated by Western Blot. NO and PGI2 were evaluated by commercial kits. We report here that in CF, TLR4 activation increased B1R mRNA and protein levels, as well as COX-2 and iNOS levels. B1R mRNA levels were also induced by interleukin-1α via its cognate receptor IL-1R1. In LPS-pretreated CF the DAKD treatment induced higher responses with respect to those observed in non LPS-pretreated CF, increasing PGI2 secretion and NO production; and reducing collagen I protein levels in CF. In conclusion, no significant response to DAKD was observed (due to very low expression of B1R in CF) - but pre-activation of TLR4 in CF, conditions that significantly enhanced B1R expression, led to an additional response of DAKD.


Subject(s)
Fibroblasts/metabolism , Myocytes, Cardiac/metabolism , Receptor, Bradykinin B1/biosynthesis , Toll-Like Receptor 4/biosynthesis , Animals , Cells, Cultured , Fibroblasts/drug effects , Gene Expression , Humans , Lipopolysaccharides/toxicity , Mice , Mice, Knockout , Myocytes, Cardiac/drug effects , Rats , Rats, Sprague-Dawley , Receptor, Bradykinin B1/agonists , Receptor, Bradykinin B1/genetics , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/genetics
SELECTION OF CITATIONS
SEARCH DETAIL