Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2309976, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973256

ABSTRACT

Efficient and site-specific delivery of therapeutics drugs remains a critical challenge in cancer treatment. Traditional drug nanocarriers such as antibody-drug conjugates are not generally accessible due to their high cost and can lead to serious side effects including life-threatening allergic reactions. Here, these problems are overcome via the engineering of supramolecular agents that are manufactured with an innovative double imprinting approach. The developed molecularly imprinted nanoparticles (nanoMIPs) are targeted toward a linear epitope of estrogen receptor alfa (ERα) and loaded with the chemotherapeutic drug doxorubicin. These nanoMIPs are cost-effective and rival the affinity of commercial antibodies for ERα. Upon specific binding of the materials to ERα, which is overexpressed in most breast cancers (BCs), nuclear drug delivery is achieved via receptor-mediated endocytosis. Consequentially, significantly enhanced cytotoxicity is elicited in BC cell lines overexpressing ERα, paving the way for precision treatment of BC. Proof-of-concept for the clinical use of the nanoMIPs is provided by evaluating their drug efficacy in sophisticated three-dimensional (3D) cancer models, which capture the complexity of the tumor microenvironment in vivo without requiring animal models. Thus, these findings highlight the potential of nanoMIPs as a promising class of novel drug compounds for use in cancer treatment.

2.
Anal Bioanal Chem ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38898327

ABSTRACT

Periodontal disease affects supporting dental structures and ranks among one of the top most expensive conditions to treat in the world. Moreover, in recent years, the disease has also been linked to cardiovascular and Alzheimer's diseases. At present, there is a serious lack of accurate diagnostic tools to identify people at severe risk of periodontal disease progression. Porphyromonas gingivalis is often considered one of the most contributing factors towards disease progression. It produces the Arg- and Lys-specific proteases Rgp and Kgp, respectively. Within this work, a short epitope sequence of these proteases is immobilised onto a magnetic nanoparticle platform. These are then used as a template to produce high-affinity, selective molecularly imprinted nanogels, using the common monomers N-tert-butylacrylamide (TBAM), N-isopropyl acrylamide (NIPAM), and N-(3-aminopropyl) methacrylamide hydrochloride (APMA). N,N-Methylene bis(acrylamide) (BIS) was used as a crosslinking monomer to form the interconnected polymeric network. The produced nanogels were immobilised onto a planar gold surface and characterised using the optical technique of surface plasmon resonance. They showed high selectivity and affinity towards their template, with affinity constants of 79.4 and 89.7 nM for the Rgp and Kgp epitope nanogels, respectively. From their calibration curves, the theoretical limit of detection was determined to be 1.27 nM for the Rgp nanogels and 2.00 nM for the Kgp nanogels. Furthermore, they also showed excellent selectivity against bacterial culture supernatants E8 (Rgp knockout), K1A (Kgp knockout), and W50-d (wild-type) strains in complex medium of brain heart infusion (BHI).

3.
Anal Chim Acta ; 1285: 342004, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38057055

ABSTRACT

Herein, we describe the synthesis and characterisation of four synthetic recognition materials (nanoMIPs) selective for the glucocorticoid steroids - prednisolone, prednisone, dexamethasone, and cortisone. Using a solid-phase synthesis approach, these materials were then applied in the development of a surface plasmon resonance (SPR) sensor for the detection of these four targets in doped urine, to mimic the routine testing of agricultural waste for possible environmental exposure. The synthesised particles displayed a range of sizes between 104 and 160 nm. Affinity studies were performed, and these synthetic materials were shown to display nanomolar affinities (15.9-62.8 nM) towards their desired targets. Furthermore, we conducted cross-reactivity studies to assess the materials selectivity towards their desired target and the materials showed excellent selectivity when compared to the non-desired target, with selectivity factors calculated. Furthermore, through the use of 3D visualisation it can be seen that small changes between structures (such as a hydroxyl to ketone transformation) there is excellent selectivity between the compounds in the ranges of 100 fold plus. Using Surine™ doped samples the materials offered comparable nanomolar affinities (10.7-75.7 nM) towards their targets when compared to the standardised buffer preparation. Detection levels in urine for all compounds was in the nanomolar range. The developed sensor offers potential for these devices to be used in the prevention of these pharmaceutical compounds to enter the surrounding environment through agricultural waste through monitoring at source. Likewise, they can be used to monitor use in clinical samples.


Subject(s)
Molecular Imprinting , Surface Plasmon Resonance , Glucocorticoids , Point-of-Care Systems , Technology
4.
Nanoscale Adv ; 5(19): 5352-5360, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37767033

ABSTRACT

It is becoming increasingly more significant to detect and separate hormones from water sources, with the development of synthetic recognition materials becoming an emerging field. The delicate nature of biological recognition materials such as the antibodies means the generation of robust viable synthetic alternatives has become a necessity. Molecularly imprinted nanoparticles (NanoMIPs) are an exciting class that has shown promise due the generation of high-affinity and specific materials. While nanoMIPs offer high affinity, robustness and reusability, their production can be tricky and laborious. Here we have developed a simple and rapid microwaveable suspension polymerisation technique to produce nanoMIPs for two related classes of drug targets, Selective Androgen Receptor Modulators (SARMs) and steroids. These nanoMIPs were produced using one-pot microwave synthesis with methacrylic acid (MAA) as the functional monomer and ethylene glycol dimethacrylate (EGDMA) as a suitable cross-linker, producing particles of an approximate range of 120-140 nm. With the SARMs-based nanoMIPs being able to rebind 94.08 and 94.46% of their target molecules (andarine, and RAD-140, respectively), while the steroidal-based nanoMIPs were able to rebind 96.62 and 96.80% of their target molecules (estradiol and testosterone, respectively). The affinity of nanoMIPs were investigated using Scatchard analysis, with Ka values of 6.60 × 106, 1.51 × 107, 1.04 × 107 and 1.51 × 107 M-1, for the binding of andarine, RAD-140, estradiol and testosterone, respectively. While the non-imprinted control polymer (NIP) shows a decrease in affinity with Ka values of 3.40 × 104, 1.01 × 104, 1.83 × 104, and 4.00 × 104 M-1, respectively. The nanoMIPs also demonstrated good selectivity and specificity of binding the targets from a complex matrix of river water, showing these functional materials offer multiple uses for trace compound analysis and/or sample clean-up.

5.
Glob Chall ; 7(6): 2200215, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37287590

ABSTRACT

Virus recognition has been driven to the forefront of molecular recognition research due to the COVID-19 pandemic. Development of highly sensitive recognition elements, both natural and synthetic is critical to facing such a global issue. However, as viruses mutate, it is possible for their recognition to wane through changes in the target substrate, which can lead to detection avoidance and increased false negatives. Likewise, the ability to detect specific variants is of great interest for clinical analysis of all viruses. Here, a hybrid aptamer-molecularly imprinted polymer (aptaMIP), that maintains selective recognition for the spike protein template across various mutations, while improving performance over individual aptamer or MIP components (which themselves demonstrate excellent performance). The aptaMIP exhibits an equilibrium dissociation constant of 1.61 nM toward its template which matches or exceeds published examples of imprinting of the spike protein. The work here demonstrates that "fixing" the aptamer within a polymeric scaffold increases its capability to selectivity recognize its original target and points toward a methodology that will allow variant selective molecular recognition with exceptional affinity.

6.
J Mater Chem B ; 10(35): 6792-6799, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35678703

ABSTRACT

Selective Androgen Receptor Modulators (SARMs) are a fairly new class of therapeutic compounds that act upon the androgen receptor. They proffer similar anabolic properties to steroids, but with a much-reduced androgenic profile. They have become a popular substance of abuse in competitive sport. Being relatively new, detection systems are limited to chromatographic methods. Here we present a surface plasmon resonance sensor for three commonly-used SARMS, Andarine, Ligandrol and RAD-140, using high-affinity molecularly imprinted nanoparticles (nanoMIPs) as the recognition element. Synthesised nanoMIPS exhibited dissociation constant (KD) values of 29.3 nM, 52.5 nM and 75.1 nM for Andarine, Ligandrol and RAD-140 nanoMIPs, respectively. Cross-reactivity of the particles was explored using the alternative SARMs, with the nanoMIPs demonstrating good specificity. Fetal Bovine Serum (FBS) was used to assess the ability of the SPR-based nanoMIP sensor to detect the target compounds in a comparable biological matrix, with observed KD values of 12.3 nM, 31.9 nM and 28.1 nM for Andarine, Ligandrol and RAD-140 nanoMIPs, respectively. Theoretical limits of detection (LoD) were estimated from a calibration plot in FBS and show that the nanoMIP-based sensors have the potential to theoretically measure these SARMs in the low to sub nM range. Crucially these levels are below the minimum required performance limit (MRPL) set for these compounds by WADA. This study highlights the power of modern molecular imprinting to rapidly address required molecular recognition for new compounds of interest.


Subject(s)
Nanoparticles , Surface Plasmon Resonance , Acetamides , Aminophenols , Nanoparticles/chemistry , Nitriles , Oxadiazoles , Receptors, Androgen , Serum Albumin, Bovine
7.
J Mater Chem B ; 10(35): 6732-6741, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35355036

ABSTRACT

Modulation of enzyme activity allows for control over many biological pathways and while strategies for the pharmaceutical design of inhibitors are well established; methods for promoting activation, that is an increase in enzymatic activity, are not. Here we demonstrate an innovative epitope mapping technique using molecular imprinting to identify four surface epitopes of acetylcholinesterase (AChE). These identified epitopes were then used as targets for the synthesis of molecularly imprinted nanoparticles (nanoMIPs). The enzymatic activity of AChE was increased upon exposure to these nanoMIPs, with one particular identified epitope nanoMIP leading to an increase in activity of 47× compared to enzyme only. The impact of nanoMIPs on the inhibited enzyme is also explored, with AChE activity recovering from 11% (following exposure to an organophosphate) to 73% (following the addition of nanoMIPs). By stabilizing the conformation of the protein rather than targeting the active site, the allosteric nature of MIP-induced reactivation suggests a new way to promote enzyme activity, even under the presence of an inhibitor. This method of enzyme activation shows promise to treat enzyme deficiency diseases or in medical emergencies where an external agent affects protein function.


Subject(s)
Acetylcholinesterase , Nanoparticles , Epitopes , Molecularly Imprinted Polymers , Nanoparticles/chemistry , Organophosphates , Polymers/chemistry
8.
Anal Bioanal Chem ; 414(12): 3687-3696, 2022 May.
Article in English | MEDLINE | ID: mdl-35318515

ABSTRACT

Using a solid-phase molecular imprinting technique, high-affinity nanoparticles (nanoMIPs) selective for the target antibiotics, ciprofloxacin, moxifloxacin, and ofloxacin have been synthesised. These have been applied in the development of a surface plasmon resonance (SPR) sensor for the detection of the three antibiotics in both river water and milk. The particles produced demonstrated good uniformity with approximate sizes of 65.8 ± 1.8 nm, 76.3 ± 4.1 nm, and 85.7 ± 2.5 nm, and were demonstrated to have affinities of 36.2 nM, 54.7 nM, and 34.6 nM for the ciprofloxacin, moxifloxacin, and ofloxacin nanoMIPs, respectively. Cross-reactivity studies highlighted good selectivity towards the target antibiotic compared with a non-target antibiotic. Using spiked milk and river water samples, the nanoMIP-based SPR sensor offered comparable affinity with 66.8 nM, 33.4 nM, and 55.0 nM (milk) and 39.3 nM, 26.1 nM, and 42.7 nM (river water) for ciprofloxacin, moxifloxacin, and ofloxacin nanoMIPs, respectively, to that seen within a buffer standard. Estimated LODs for the three antibiotic targets in both milk and river water were low nM or below. The developed SPR sensor showed good potential for using the technology for the capture and detection of antibiotics from food and environmental samples.


Subject(s)
Molecular Imprinting , Nanoparticles , Allergens , Animals , Anti-Bacterial Agents , Ciprofloxacin , Milk , Molecularly Imprinted Polymers , Moxifloxacin , Ofloxacin , Rivers , Surface Plasmon Resonance , Water
9.
Talanta ; 240: 123158, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34952354

ABSTRACT

Molecularly imprinted polymers (MIPs) are fast becoming alternatives to biological recognition materials, offering robustness and the ability to work in extreme environments. Here, a modified thymine-based nucleobase, with acrylamide at the 5-postion (AA-dT) was used as a co-monomer in the synthesis of a thin-film electropolymerised MIP system for the molecular recognition of the protein haemoglobin. The AA-dT co-monomer incorporated into a N-hydroxymethylacrylamide (NHMAm) MIP offered a two-fold superior binding affinity of the NHMAm only MIP, with KD values of 0.72 µM and 1.67 µM, respectively. A unique AA-dT:NHMAm MIP bilayer was created in an attempt to increase the amount AA-dT incorporated into the film, and this obtained a respectable KD value of 7.03 µM. All MIPs produced excellent selectivity for the target protein and when applied to a sensor platform (Surface Plasma Resonance), the limit of detection for the MIPs is in the nM range (3.87, 3.47, and 3.87 nM, for the NHMAm MIP, AA-dT:NHMAm MIP, and AA-dT:NHMAm MIP bilayer, respectively). The introduction of the modified thymine-based nucleobase offers a promising strategy for improving the properties of a MIP, allowing these MIPs to potentially be a highly robust and selective material for molecular recognition.


Subject(s)
Molecular Imprinting , Acrylamide , Acrylamides , Hemoglobins , Molecularly Imprinted Polymers , Thymine
10.
Macromol Biosci ; 21(5): e2100002, 2021 05.
Article in English | MEDLINE | ID: mdl-33760365

ABSTRACT

Aptamers offer excellent potential for replacing antibodies for molecular recognition purposes however their performance can compromise with biological/environmental degradation being a particular problem. Molecularly imprinted Polymers (MIPs) offer an alternative to biological materials and while these offer the robustness and ability to work in extreme environmental conditions, they often lack the same recognition performance. By slightly adapting the chemical structure of a DNA aptamer it is incorporated for use as the recognition part of a MIP, thus creating an aptamer-MIP hybrid or aptaMIP. Here these are developed for the detection of the target protein trypsin. The aptaMIP nanoparticles offer superior binding affinity over conventional MIP nanoparticles (nanoMIPs), with KD values of 6.8 × 10-9 (±0.2 × 10-9 ) m and 12.3 × 10-9 (±0.4 × 10-9 ) m for the aptaMIP and nanoMIP, respectively. The aptaMIP also outperforms the aptamer only (10.3 × 10-9 m). Good selectivity against other protein targets is observed. Using surface plasmon resonance, the limit of detection for aptaMIP nanoparticles is twofold lower (2 nm) compared to the nanoMIP (4 nm). Introduction of the aptamer as a "macro-monomer" into the MIP scaffold has beneficial effects and offers potential to improve this class of polymers significantly.


Subject(s)
Aptamers, Nucleotide/chemistry , Models, Molecular , Molecularly Imprinted Polymers/chemistry , Nanoparticles/chemistry , Trypsin/chemistry , Biosensing Techniques , Muramidase/chemistry , Serum Albumin, Bovine/chemistry , Surface Plasmon Resonance
11.
Methods Mol Biol ; 2073: 183-194, 2020.
Article in English | MEDLINE | ID: mdl-31612443

ABSTRACT

Molecularly imprinted polymers are leading technology in the development of protein biomimetics. This chapter describes the protocol for the synthesis of protein imprinted nanoparticles. These materials exhibit exceptional affinity (into the nM/pM range) and selectivity for their target template. The nanoparticles can be developed for a wide range of targets, while exhibiting excellent robustness, solubility, and flexibility in use. They are finding use in the creation of drug delivery vectors and sensing and recognition assays.


Subject(s)
Molecular Imprinting/methods , Nanoparticles/chemistry , Proteins/chemistry , Polymers/chemistry , Solid-Phase Synthesis Techniques
12.
Biosens Bioelectron ; 82: 20-5, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27031187

ABSTRACT

Molecular imprints of the tobacco necrosis virus (TNV) have been formed within polythiophene nanofilms with an approximate thickness of 200nm. These films have been electrochemically deposited onto conducting Au surfaces. Upon rebinding, the TNV-polythiophene complex changes the fluorescence intensity of the nanofilm. The fluorescence intensity at 410nm was observed to be proportional to the concentration of viruses in the range of 0.1-10ngL(-1) (0.15-15pg) with the lower calculated detection limit of 2.29ngL(-1) (3.4pg). The intensity of the fluorescence emission is not affected by the thickness of the polythiophene film and the nature of TNV specific binding sites. Kinetic data analyses showed that the nanofilm responds to TNV within 2min; and cross-selectivity studies with tobacco mosaic virus (TMV) showed an excellent specificity for the targeted TNV. These binding experiments demonstrate the potential of fluorescence emission for the specific, label free and rapid detection of viruses using nanofilm sensors. Taking into account the lower limit of detection, the fluorescence sensing reported here is reliable, simple to perform, rapid, cost-effective and offers a sensitive analytical method for virus detection in water resources.


Subject(s)
Drinking Water/virology , Molecular Imprinting , Nanostructures/chemistry , Polymers/chemistry , Thiophenes/chemistry , Tombusviridae/isolation & purification , Fluorescence , Limit of Detection , Spectrometry, Fluorescence/methods , Nicotiana/virology , Tobacco Mosaic Virus/isolation & purification
13.
Anal Chim Acta ; 901: 12-33, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26614054

ABSTRACT

Mycotoxins are a problematic and toxic group of small organic molecules that are produced as secondary metabolites by several fungal species that colonise crops. They lead to contamination at both the field and postharvest stages of food production with a considerable range of foodstuffs affected, from coffee and cereals, to dried fruit and spices. With wide ranging structural diversity of mycotoxins, severe toxic effects caused by these molecules and their high chemical stability the requirement for robust and effective detection methods is clear. This paper builds on our previous review and summarises the most recent advances in this field, in the years 2009-2014 inclusive. This review summarises traditional methods such as chromatographic and immunochemical techniques, as well as newer approaches such as biosensors, and optical techniques which are becoming more prevalent. A section on sampling and sample treatment has been prepared to highlight the importance of this step in the analytical methods. We close with a look at emerging technologies that will bring effective and rapid analysis out of the laboratory and into the field.


Subject(s)
Mycotoxins/analysis , Biosensing Techniques , Chromatography, Gas/methods , Chromatography, Liquid/methods , Enzyme-Linked Immunosorbent Assay
14.
J Chromatogr B Analyt Technol Biomed Life Sci ; 986-987: 135-42, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25728371

ABSTRACT

A proof of principle gas chromatography-mass spectrometry method is presented, in combination with clean up assays, aiming to improve the analysis of methyl mycocerosate tuberculosis biomarkers from sputum. Methyl mycocerosates are generated from the transesterification of phthiocerol dimycocerosates (PDIMs), extracted in petroleum ether from sputum of tuberculosis suspect patients. When a high matrix background is present in the sputum extracts, the identification of the chromatographic peaks corresponding to the methyl derivatives of PDIMs analytes may be hindered by the closely eluting methyl ether of cholesterol, usually an abundant matrix constituent frequently present in sputum samples. The purification procedures involving solid phase extraction (SPE) based methods with both commercial Isolute-Florisil cartridges, and purpose designed molecularly imprinted polymeric materials (MIPs), resulted in cleaner chromatograms, while the mycocerosates are still present. The clean-up performed on solutions of PDIMs and cholesterol standards in petroleum ether show that, depending on the solvent mix and on the type of SPE used, the recovery of PDIMs is between 64 and 70%, whilst most of the cholesterol is removed from the system. When applied to petroleum ether extracts from representative sputum samples, the clean-up procedures resulted in recoveries of 36-68% for PDIMs, allowing some superior detection of the target analytes.


Subject(s)
Antigens, Bacterial/analysis , Biomarkers/analysis , Lipids/analysis , Mycobacterium tuberculosis/chemistry , Solid Phase Extraction/methods , Sputum/microbiology , Antigens, Bacterial/chemistry , Antigens, Bacterial/isolation & purification , Biomarkers/chemistry , Gas Chromatography-Mass Spectrometry , Humans , Lipids/chemistry , Lipids/isolation & purification , Molecular Imprinting
15.
Adv Mater ; 27(4): 750-8, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25413444

ABSTRACT

A strategy to exploit aptamers as recognition elements of molecularly imprinted polymeric nanoparticles (AptaMIP NPs) is presented, via modification of the chemical structure of the DNA. It is demonstrated that the introduction of this modified "aptamer monomer" results in an increase of the affinity of the produced MIP NPs, without altering their physical properties such as size, shape, or dispersibility.


Subject(s)
Aptamers, Nucleotide/chemistry , Molecular Imprinting , Nanoparticles/chemistry , Polymers/chemistry , Polymers/chemical synthesis , Aptamers, Nucleotide/genetics , Base Sequence , Models, Molecular , Molecular Conformation
16.
Analyst ; 139(19): 4955-63, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25083511

ABSTRACT

A method capable of screening for multiple steroids in urine has been developed, using a series of twelve structurally similar, and commercially relevant compounds as target analytes. A molecularly imprinted solid phase extraction clean-up step was used to make the sample suitable for injection onto a GC×GC-MS setup. Significant improvements compared to a commercially available C-18 material were observed. Each individual steroid was able to be separated and identified, using both the retention profile and diagnostic fragmentation ion monitoring abilities of the comprehensive chromatographic-mass spectrometry method. Effective LODs of between 11.7 and 27.0 pg were calculated for individual steroids, effectively equivalent to concentration levels of between 0.234 and 0.540 ng mL(-1) in urine, while the application of multiple screen was demonstrated using a 10 ng mL(-1) mixed sample. The nature of this study also removes the need for sample derivitisation which speeds up the screening process.


Subject(s)
Gas Chromatography-Mass Spectrometry , Steroids/analysis , Calibration , Gas Chromatography-Mass Spectrometry/standards , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Molecular Imprinting , Polymers/chemistry , Solid Phase Extraction , Steroids/isolation & purification , Steroids/urine
17.
Colloids Surf B Biointerfaces ; 119: 6-13, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24835051

ABSTRACT

Fluoroalcohols such as 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) are strong inducers of protein secondary structure. Here, hydrolyzed (3,3,3-trifluoropropyl)trimethoxysilane (3F) is demonstrated to exhibit greater protein conformation inducing activity than HFIP, which is preserved when 3F is copolymerized in tetraethylorthosilicate (TEOS) sol-gels through protein molecular imprinting. Hydrolyzed 3F formed a pre-polymerization complex with the template protein, ß-lactoglobulin, inducing distinct α-helical structures as evidenced by circular dichroism. Fluorescence resonance energy transfer between tryptophan and the lipophilic probe 1-anilinonaphthalene-8-sulfonic acid showed a sharp molten globule (MG) transition at 0.2M 3F, whereas HFIP induced a broad MG transition centered at 0.6M HFIP. The 3F-induced BLG conformation transitions were retained upon gelation, validating use of the fluorosilane as a conformation directing functional monomer readily incorporated into sol-gels.


Subject(s)
Lactoglobulins/chemistry , Phase Transition , Propanols/chemistry , Silanes/chemistry , Anilino Naphthalenesulfonates , Animals , Cattle , Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Gels , Hydrogen-Ion Concentration , Hydrolysis , Molecular Imprinting , Protein Structure, Secondary
18.
Biosens Bioelectron ; 24(11): 3322-8, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19481920

ABSTRACT

Identification and quantification of the opiates morphine and thebaine has been achieved in three commercial poppy cultivars using FTIR-ATR spectroscopy, from a simple and rapid methanolic extraction, suitable for field analysis. The limits of detection were 0.13 mg/ml (0.013%, w/v) and 0.3 mg/ml (0.03%, w/v) respectively. The concentrations of opiates present were verified with HPLC-MS. The chemometrics has been used to identify specific "signature" peaks in the poppy IR spectra for characterisation of cultivar by its unique fingerprint offering a potential forensic application in opiate crop analysis.


Subject(s)
Algorithms , Analgesics, Opioid/analysis , Biosensing Techniques/methods , Combinatorial Chemistry Techniques/methods , Papaver/chemistry , Plant Extracts/analysis , Spectroscopy, Fourier Transform Infrared/methods , Sensitivity and Specificity
19.
Anal Chim Acta ; 632(2): 168-80, 2009 Jan 26.
Article in English | MEDLINE | ID: mdl-19110091

ABSTRACT

Mycotoxins are small (MW approximately 700), toxic chemical products formed as secondary metabolites by a few fungal species that readily colonise crops and contaminate them with toxins in the field or after harvest. Ochratoxins and Aflatoxins are mycotoxins of major significance and hence there has been significant research on broad range of analytical and detection techniques that could be useful and practical. Due to the variety of structures of these toxins, it is impossible to use one standard technique for analysis and/or detection. Practical requirements for high-sensitivity analysis and the need for a specialist laboratory setting create challenges for routine analysis. Several existing analytical techniques, which offer flexible and broad-based methods of analysis and in some cases detection, have been discussed in this manuscript. There are a number of methods used, of which many are lab-based, but to our knowledge there seems to be no single technique that stands out above the rest, although analytical liquid chromatography, commonly linked with mass spectroscopy is likely to be popular. This review manuscript discusses (a) sample pre-treatment methods such as liquid-liquid extraction (LLE), supercritical fluid extraction (SFE), solid phase extraction (SPE), (b) separation methods such as (TLC), high performance liquid chromatography (HPLC), gas chromatography (GC), and capillary electrophoresis (CE) and (c) others such as ELISA. Further currents trends, advantages and disadvantages and future prospects of these methods have been discussed.


Subject(s)
Mycotoxins/analysis , Animals , Chromatography , Electrophoresis, Capillary , Humans , Mycotoxins/isolation & purification , Solid Phase Extraction
20.
Biosens Bioelectron ; 24(5): 1270-5, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-18789676

ABSTRACT

Traditionally, the integration of sensing gel layers in surface plasmon resonance (SPR) is achieved via "bulk" methods, such as precipitation, spin-coating or in-situ polymerization onto the total surface of the sensor chip, combined with covalent attachment of the antibody or receptor to the gel surface. This is wasteful in terms of materials as the sensing only occurs at the point of resonance interrogated by the laser. By isolating the sensing materials (antibodies, enzymes, aptamers, polymers, MIPs, etc.) to this exact spot a more efficient use of these recognition elements will be achieved. Here we present a method for the in-situ formation of polymers, using the energy of the evanescent wave field on the surface of an SPR device, specifically localized at the point of interrogation. Using the photo-initiator couple of methylene blue (sensitizing dye) and sodium p-toluenesulfinate (reducing agent) we polymerized a mixture of N,N-methylene-bis-acrylamide and methacrylic acid in water at the focal point of SPR. No polymerization was seen in solution or at any other sites on the sensor surface. Varying parameters such as monomer concentration and exposure time allowed precise control over the polymer thickness (from 20-200 nm). Standard coupling with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide was used for the immobilization of protein G which was used to bind IgG in a typical biosensor format. This model system demonstrated the characteristic performance for this type of immunosensor, validating our deposition method.


Subject(s)
Biosensing Techniques/instrumentation , Immunoassay/instrumentation , Polymers/chemistry , Surface Plasmon Resonance/instrumentation , Biosensing Techniques/methods , Crystallization/methods , Equipment Design , Equipment Failure Analysis , Immunoassay/methods , Reproducibility of Results , Sensitivity and Specificity , Surface Plasmon Resonance/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...