Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Occup Hyg ; 58(2): 241-50, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24366205

ABSTRACT

The goal of this study was to evaluate the respiratory and metabolic stresses of air-fed ensembles used by workers in the nuclear, chemical, and pharmaceutical industries during rest, low-, and moderate-intensity treadmill exercise. Fourteen men and six women wore two different air-fed ensembles (AFE-1 and AFE-2) and one two-piece supplied-air respirator (SA) at rest (REST) and while walking for 6min at oxygen consumption (V.O2) rates of 1.0 (LOW) and 2.0 l min(-1) (MOD). Inhaled CO2 (FICO2), inhaled O2 (FIO2), pressure, and temperature were measured continuously breath-by-breath. For both LOW and MOD, FICO2 was significantly lower (P < 0.03) and FIO2 was significantly greater (P < 0.008) for SA compared with AFE-1 and AFE-2 in women, while in men, similar trends were observed. Significantly lower FICO2 (P < 0.009) and significantly greater FIO2 (P < 0.04) were consistently observed in AFE-1 compared with AFE-2 in men during LOW and MOD. For both men and women, average FICO2 exceeded 2.0% in AFE-2 during MOD. During LOW and MOD, average FIO2 in AFE-1 and AFE-2 dropped <19.5% in men and women. For men and women, average inhalation pressures (PIave) were significantly greater in both air-fed ensembles than SA (P < 0.001) during REST, LOW, and MOD. Inhaled gas temperature was significantly lower in SA than in either air-fed ensemble (P < 0.001). When the air supply was shut off during walking, the time taken for minimum FICO2 to reach 2.0% was <38 s for all three ensembles in both men and women, an observation that has implications for the design of emergency escape protocols for air-fed ensemble wearers. Results show that inhaled gas concentrations may reach physiologically stressful levels in air-fed ensembles during moderate-intensity treadmill walking.


Subject(s)
Inhalation/physiology , Physical Exertion/physiology , Respiratory Protective Devices , Rest/physiology , Adolescent , Adult , Air Pressure , Carbon Dioxide/analysis , Equipment Design , Female , Humans , Male , Oxygen/analysis , Oxygen Consumption , Sex Factors , Young Adult
2.
J Occup Environ Hyg ; 7(8): 477-82, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20521197

ABSTRACT

The purpose of this study was to determine the effects of two leather (L1, L2) and two rubber (R1, R2) boots on firefighters' metabolic and respiratory variables during simulated firefighting tasks. Twenty-five men and 25 women, while wearing full turnout clothing, a 10.5-kg backpack, gloves, helmet, and one of four randomly assigned pairs of firefighter boots, walked for 6 min at 3 mph (4.8 km/hr) on a level treadmill while carrying a 9.5-kg hose and climbed a stair ergometer for 6 min at 45 steps per min without the hose. Minute ventilation (VE), absolute and relative oxygen consumption (VO2 and VO2 ml kg min(-1), respectively), CO(2) production (VCO2), heart rate (HR), and peak inspiratory (PIF) and expiratory (PEF) flow rates were measured, and an average of the breath-by-breath data from minute 6 was used for analysis. During treadmill exercise, a 1-kg increase in boot weight caused significant (p < 0.05) increases in VE (9%), VO2 (5 - 6%), VCO2 (8%), and HR (6%) for men, whereas a 1-kg increase caused significant increases in VO2 (3 - 4.5%) and VCO2 (4%) for women. During stair ergometry, a 1-kg increase in boot weight caused significant increases in VE(approximately 3%), relative VO2 (approximately 2%), VCO2 (3%), and PIF (approximately 4%) in men and women (p < 0.05) and a significant increase in absolute VO2 (approximately 3.5%) in men only. Mean increases in metabolic and respiratory variables per 1-kg increase in boot weight were in the 5 to 12% range observed previously for men during treadmill walking but were considerably smaller for women. Mean increases in oxygen consumption during stair ergometry were statistically significant but were smaller in the current study than previously observed and may not be practically significant. There was no significant effect of boot design in addition to boot weight for either mode of exercise.


Subject(s)
Equipment Design/adverse effects , Protective Clothing , Shoes , Work/physiology , Adult , Exercise Test , Female , Fires , Humans , Male , Oxygen Consumption , Sex Factors , Task Performance and Analysis
3.
J Occup Environ Hyg ; 5(4): 227-31, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18247226

ABSTRACT

Workers wearing full-body safety harnesses are at risk for suspension trauma if they are not rescued in 5 to 30 min after a successfully arrested fall. Suspension trauma, which may be fatal, occurs when a person's legs are immobile in a vertical posture, leading to the pooling of blood in the legs, pelvis, and abdomen, and the reduction of return blood flow to the heart and brain. To measure suspension tolerance time, 22 men and 18 women with construction experience were suspended from the chest D-ring (CHEST) and back D-ring (BACK) of full-body, fall-arrest harnesses. Fifteen men and 13 women from the original group of subjects were then suspended using a newly developed National Institute for Occupational Safety and Health harness accessory (ACCESS), which supports the upper legs. Midthigh circumference changes were 1.4 and 1.9 cm, changes in minute ventilation were 1.2 and 1.5 L/min, changes in heart rate (HR) were 15.1 and 21.6 bpm, and changes in mean arterial pressure were 5.1 and -2.6 mmHg (p < or = 0.05) for all subjects during CHEST and BACK, respectively. Kaplan-Meier median suspension time for all subjects for the CHEST condition was 29 min (range 4-60 min) and 31 min (range 5-56 min) for the BACK condition. The 95th percentile for suspension time was 7 min for CHEST and 11 min for BACK. Cox regression revealed that body weight had a statistically significant effect on the time until experiencing a medical end point (p < or = 0.05) during the BACK condition. Mean (+/- SD) suspension time was 58 +/- 6 min (range 39-60 min) for all subjects for the ACCESS condition. There were no terminations due to medical symptoms during the ACCESS suspension, changes in physiological variables were small, and 85% of ACCESS subjects completed 60-min suspensions. These data provide information on motionless suspension tolerance time to standards-setting organizations and demonstrate the potential of a prototype harness accessory to delay or prevent suspension trauma.


Subject(s)
Accidental Falls , Accidents, Occupational/prevention & control , Immobilization/adverse effects , Occupational Health , Protective Devices/adverse effects , Adult , Blood Pressure , Equipment Design , Ergonomics , Female , Heart Rate , Humans , Kaplan-Meier Estimate , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...