Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 322: 121151, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36709034

ABSTRACT

Marsh resilience post disturbance is strongly dependent on the belowground dynamics affecting the emergent plants aboveground. We investigated the long-term impacts at the marsh-water interface in coastal wetlands of south Louisiana after the 2010 Deepwater Horizon oil spill with a combination of fieldwork (2010-2018) and spatial analysis (1998-2021). Data were collected on shoreline erosion rates, marsh platform elevation heights and cantilever overhang widths, and soil strength up to 1 m depth. Oil concentration in the top 5 cm of the marsh soil were determined using gas chromatography/mass spectrometry and were 1000 times higher than before the spill and remained 10 times higher eight years post-oiling. The oiling initially caused the marsh edge to subside, and chronic effects lowered soil strength, creating a faster erosion rate and deeper water within 150 cm of the shoreline. Soil strength declined by 50% throughout the 1 m soil profile after oiling and has not recovered. The mean erosion rate for 11 years post-spill was double that before oiling and there was an additive impact on erosion rates after Hurricane Isaac. Erosion appeared to have recovered to pre-spill rates by 2019, however from 2019 to 2021, the rate increased by 118% above the pre-spill rate. The continuing loss of soil strength indicates that the belowground biomass was seriously compromised by oiling. The perpetuation of oil in the remaining marsh may have set a new baseline for soil strength and subsequent storm induced erosional events. The remaining marsh soils retain chronic physical and biological legacies compromising recovery for more than a decade that may be evident in other marsh habitats subject to oiling and other stressors.


Subject(s)
Petroleum Pollution , Wetlands , Soil , Petroleum Pollution/analysis , Ecosystem , Water/analysis
2.
Environ Monit Assess ; 195(2): 278, 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36609764

ABSTRACT

Total ammonia (TA) concentrations (NH3 + NH4+) at four locations at the terminal end of the Mississippi River, the largest river on the North American continent, were assembled to examine trends and relationships with point and non-point loadings from 1980 to 2019 and compared to values in 1900 to 1901. TA concentrations were lowest in 1900 to 1901, highest in 1980 and then declined, and then rose slightly in the last 2 decades. Variations in individual measurements and in situ temperature are indirectly related because of the influence temperature has on ammonia solubility and protein degradation rates. Importantly, the average annual concentrations of TA were directly related to both total coliform and fecal coliform densities. The highest measured average annual TA concentrations in the river (15.5 ± 1.5 SE µmol in 1985) were below the currently recommended toxicity thresholds for freshwater aquatic ecosystems. Sewerage loadings are implicated as controlling factors on TA concentrations, not nitrogen stabilizers added to fertilizers to reduce ammonia conversion to nitrate, nor the fertilizer loadings.


Subject(s)
Ammonia , Rivers , Ammonia/analysis , Ecosystem , Environmental Monitoring , Enterobacteriaceae , Gram-Negative Bacteria
3.
PLoS One ; 17(12): e0276513, 2022.
Article in English | MEDLINE | ID: mdl-36480558

ABSTRACT

There are conflicting predictions of climate change effects and landuse on the discharge of the Mississippi River-the largest river in North America. Are discharges becoming higher or lower, and if they did change, then when? To address these uncertainties I compiled a two-hundred-year long dataset of the annual average, minimum, and maximum discharges at five stations draining the Mississippi River watershed: at Clinton, IA, Herman, MO, St. Louis, MO, Louisville, KY, and Vicksburg, MS. A spline/Lowess analysis tested for trends and inflection points. All three discharge metrics increased, and the minimum annual discharge increased faster than either the annual maximum discharge or annual average discharge. A regression analysis of variations in average discharges from 1950 to 2020 at these five locations demonstrates correlations to the air pressure differentials represented in the North Atlantic Oscillation (NAO) Index for January, February and March. The longest data set, for the Mississippi River at Vicksburg, demonstrates a similar direct relationship with the NAO Index from 1826 to 1969. After 1969, however, the relationship between discharge and the NAO Index is insignificant even though the range of Index values overlap for the two intervals. A breakpoint and rise in discharge ca. 1970 is consistent with well-documented land cover and land use changes occurring then that resulted in reduced evapotranspiration as homogenous cropping systems were established, and a higher percent of precipitation was routed into groundwater and baseflow. The Bonnet Carré Spillway at New Orleans, LA, is being opened more frequently to reduce flood threats as the river's stage increasingly reaches the threshold for opening it. Significant water quality impairments in the coastal zone will appear or be sustained with these openings. These data may be useful for climate change assessments through modeling or synthetic assessments in combination with other data sets.


Subject(s)
Mississippi , New Orleans , North America
4.
Ecol Appl ; 32(1): e02489, 2022 01.
Article in English | MEDLINE | ID: mdl-34741358

ABSTRACT

Marine oil spills continue to be a global issue, heightened by spill events such as the 2010 Deepwater Horizon spill in the Gulf of Mexico, the largest marine oil spill in US waters and among the largest worldwide, affecting over 1,000 km of sensitive wetland shorelines, primarily salt marshes supporting numerous ecosystem functions. To synthesize the effects of the oil spill on foundational vegetation species in the salt marsh ecosystem, Spartina alterniflora and Juncus roemerianus, we performed a meta-analysis using data from 10 studies and 255 sampling sites over seven years post-spill. We examined the hypotheses that the oil spill reduced plant cover, stem density, vegetation height, aboveground biomass, and belowground biomass, and tracked the degree of effects temporally to estimate recovery time frames. All plant metrics indicated impacts from oiling, with 20-100% maximum reductions depending on oiling level and marsh zone. Peak reductions of ~70-90% in total plant cover, total aboveground biomass, and belowground biomass were observed for heavily oiled sites at the marsh edge. Both Spartina and Juncus were impacted, with Juncus affected to a greater degree. Most plant metrics had recovery time frames of three years or longer, including multiple metrics with incomplete recovery over the duration of our data, at least seven years post-spill. Belowground biomass was particularly concerning, because it declined over time in contrast with recovery trends in most aboveground metrics, serving as a strong indicator of ongoing impact, limited recovery, and impaired resilience. We conclude that the Deepwater Horizon spill had multiyear impacts on salt marsh vegetation, with full recovery likely to exceed 10 years, particularly in heavily oiled marshes, where erosion may preclude full recovery. Vegetation impacts and delayed recovery is likely to have exerted substantial influences on ecosystem processes and associated species, especially along heavily oiled shorelines. Our synthesis affords a greater understanding of ecosystem impacts and recovery following the Deepwater Horizon oil spill, and informs environmental impact analysis, contingency planning, emergency response, damage assessment, and restoration efforts related to oil spills.


Subject(s)
Petroleum Pollution , Water Pollutants, Chemical , Biomass , Ecosystem , Gulf of Mexico , Petroleum Pollution/adverse effects , Plants , Water Pollutants, Chemical/analysis , Wetlands
5.
Environ Pollut ; 284: 117506, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34261217

ABSTRACT

The ribbed mussel, Geukensia granosissima, cycles nutrients, contributes to soil stability, and can be a major component of predator-prey communities in salt marshes. Mussels were exposed to the 2010 Deepwater Horizon oil spill in the Gulf of Mexico, and salt marshes remain contaminated eight years later. We hypothesized that the oiled mussels had reduced annual growth, altered population size frequency, and perhaps changed valve morphometrics. We sampled 10 marshes near Port Sulphur, LA, to measure the morphometrics of 133 mussels and their age-specific growth rate, and also the marsh oil content and percent vegetative cover. The relationships between valve weight, length and biomass weight were stable as mussels aged. A Year 1 growth decline from 1994 to 2018 is not easily explained by estuarine acidification, flooding, and temperature rise; freshening of estuarine waters is suggested to be a probable causal factor in the declining growth rate. The average valve length and dry biomass per valve declined with oiling in 2010. A multiple regression equation using the percent cover and oil concentration in 2018 described 70% of the variation in valve length. Sites with the highest oiling had few mussels with 14 annual growth bands and more of the younger mussels compared to sites with the lowest oiling. Valve growth in Year 1 declined for four years after the oil spill and was not compensated by higher growth rates in older mussels. Annual growth was below the amount predicted in a regression equation for the five years after the oil spill. Mussel populations may also have been structured by predators that were also responsive to oiling in subtle ways.


Subject(s)
Bivalvia , Petroleum Pollution , Water Pollutants, Chemical , Animals , Ecosystem , Gulf of Mexico , Water Pollutants, Chemical/analysis , Wetlands
6.
Mar Pollut Bull ; 168: 112458, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33993041

ABSTRACT

Phytoplankton and accompanying environmental data (temperature, salinity, secchi depth, stratification, and inorganic nutrients) were analyzed from 672 surface water samples (0 to 1.5 m depth) collected from 95 stations located on the Louisiana shelf between April 1990 and August 2011. Phytoplankton were identified to the lowest practical taxonomic unit from glutaraldehyde-preserved samples using epifluorescent microscopy and reported as cells L-1. Twenty-six phytoplankton taxa (primarily diatoms) that were > 8 µm in size, identified to genus-level resolution and ranked in the top 20 in at least one of three separate categories (average abundance; frequency of occurrence; and bloom frequency) were used in subsequent analyses. Temperature, stratification, and secchi depth constituted the environmental variable combination best related to the phytoplankton community composition patterns across the 672 samples (r = 0.288; p < 0.01) according to BEST analysis (PRIMER 7). The environmental optima of the 26 taxa were calculated using the weighted-averaging algorithm in the C2 program and then used to group the taxa into common phytoplankton clusters (i.e., niches) using PRIMER 7 CLUSTER. The phytoplankton clustered into three groups: Group A (summer assemblage), Group B (winter assemblage), and Group C (spring bloom assemblage). The results demonstrate that the composition of the phytoplankton community is most related to seasonality and physical variables, whereas nutrients appear to play a larger role in driving overall phytoplankton biomass. This study provides a platform to examine phytoplankton responses to future environmental perturbations in the region.


Subject(s)
Diatoms , Phytoplankton , Environmental Monitoring , Eutrophication , Louisiana , Seasons
7.
Ambio ; 50(9): 1731-1738, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33550571

ABSTRACT

Various air and water pollution issues in the US were confronted in the last 60 years using national policy legislation, notably the Clean Water Act and the Clean Air Act. I examine changes in the concentrations of bacteria, oxygen, lead, and sulphate at the terminus of the Mississippi River before and after these pollution abatement efforts. Microbial concentrations increased or were stable from 1909 to 1980 but decreased about 3 orders of magnitude after the 1970s, while the average oxygen content increased. A large decline in lead concentration occurred after the 1960s, along with a less dramatic decline in sulphate concentrations. The pH of the river dropped to a low of 5.8 in 1965 as sulfur dioxide emissions peaked and averaged 8.2 in 2019 after emissions declined. Decades of efforts at a national scale created water quality improvements and are an example for addressing new and existing water quality challenges.


Subject(s)
Lead , Rivers , Bacteria , Environmental Monitoring , Hydrogen-Ion Concentration , Mississippi , Oxygen , Sulfates
9.
Sci Total Environ ; 743: 140420, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32758808

ABSTRACT

The position of tidal wetlands at the land-sea interface makes them especially vulnerable to the effects of nutrient discharges and sea level rise (SLR). Experimental studies of coastal wetland nutrient additions report conflicting results among and within habitats, highlighting the importance of site-specific factors, and how spatial and temporal scaling modulates responses. This suite of influences as SLR accelerates creates a "Gordian Knot" that may compromise coastal habitat integrity. We present eight testable hypotheses here to loosen this knot by identifying critical modulators about nutrient form, soil type and porosity, physiochemical gradients, and eco-evolutionary responses that may control the impacts of nutrient enrichment on coastal wetland sustainability: (1) the delivery and form of the nutrient shapes the ecosystem response; (2) soil type mediates the effects of nutrient enrichment on marshes; (3) belowground responses cannot be solely explained by phenotypic responses; (4) shifting zones of redox and salinity gradients modulate nutrient enrichment impacts; (5) eco-evolutionary processes can drive responses to nutrient availability; (6) nutrient enrichment leads to multiple changed ecosystem states; (7) biogeography trumps a plant's plastic responses to nutrient enrichment; and, (8) nutrient-enhanced wetlands are more susceptible to additional (and anticipated) anthropogenic changes. They provide a framework to investigate and integrate the urgently needed research to understand how excess nutrients threaten the sustainability of coastal wetlands, and wetlands in general. While there is no single 'right way' to test these hypotheses, including a combination of complex and simple, highly-replicated experiments is essential.

10.
Environ Int ; 138: 105409, 2020 05.
Article in English | MEDLINE | ID: mdl-32179312

ABSTRACT

Hurricanes pose an increasing threat to coastal environments as the intensity and severity of hurricanes are predicted to increase under the changing climate. Coastal wetlands are effective nature-based defenses of coastal cities against storms. However, the ecosystems themselves are also susceptible to the impacts of hurricanes, which are highly complex and not fully understood. Here we utilize multi-decadal satellite data archives (Landsat 1984-2014 and MODIS 2005-2015) and long-term coast-wide field-based environmental data (1978-2018) to investigate the impacts of hurricanes Katrina (2005), Gustav (2008), and Isaac (2012) on the coastal marshes in Louisiana, USA, where the hurricanes made landfall. While the hurricanes had immediate impacts on the marshes' biomass and area at an ecosystem scale, general recovery was observed in the next one and two years. We also found that the most severe damage always occurred in the intermediate and brackish marshes of the Breton Sound basin, where the nitrogen concentration in the water was significantly higher compared to areas with less damage (P < 0.01). Because excess nutrient can reduce the marshes' root growth and degrade their root mat, we posit that the long-term nutrient enrichment in the area, which resulted from the diverted Mississippi River water, has increased the marshes' susceptibility to hurricanes. The results highlight the resilience of coastal marsh ecosystems against hurricanes, but also underline the profound synergistic effects of climatic and anthropogenic factors on the sustainability of coastal ecosystems, which have important implications for coastal management under the current climate trend.


Subject(s)
Cyclonic Storms , Wetlands , Ecosystem , Louisiana , Nutrients
11.
Ecology ; 100(11): e02863, 2019 11.
Article in English | MEDLINE | ID: mdl-31398280

ABSTRACT

In 2014, a DNA-based phylogenetic study confirming the paraphyly of the grass subtribe Sporobolinae proposed the creation of a large monophyletic genus Sporobolus, including (among others) species previously included in the genera Spartina, Calamovilfa, and Sporobolus. Spartina species have contributed substantially (and continue contributing) to our knowledge in multiple disciplines, including ecology, evolutionary biology, molecular biology, biogeography, experimental ecology, biological invasions, environmental management, restoration ecology, history, economics, and sociology. There is no rationale so compelling to subsume the name Spartina as a subgenus that could rival the striking, global iconic history and use of the name Spartina for over 200 yr. We do not agree with the subjective arguments underlying the proposal to change Spartina to Sporobolus. We understand the importance of both the objective phylogenetic insights and of the subjective formalized nomenclature and hope that by opening this debate we will encourage positive feedback that will strengthen taxonomic decisions with an interdisciplinary perspective. We consider that the strongly distinct, monophyletic clade Spartina should simply and efficiently be treated as the genus Spartina.


Subject(s)
Poaceae , Phylogeny
12.
Science ; 365(6455)2019 08 23.
Article in English | MEDLINE | ID: mdl-31439764

ABSTRACT

Van Meter et al (Reports, 27 April 2018, p. 427) warn that achieving nitrogen reduction goals in the Gulf of Mexico will take decades as a result of legacy nitrogen effects. We discuss limitations of the modeling approach and demonstrate that legacy effects ranging from a few years to decades are equally consistent with observations. The presented time scales for system recovery are therefore highly uncertain.

13.
Ecol Evol ; 9(12): 6785-6797, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31380015

ABSTRACT

Coastal marshes are important carbon sinks facing serious threats from climatic stressors. Current research reveals that the growth of individual marsh plants is susceptible to a changing climate, but the responses of different marsh systems at a landscape scale are less clear. Here, we document the multi-decadal changes in the phenology and the area of the extensive coastal marshes in Louisiana, USA, a representative of coastal ecosystems around the world that currently experiencing sea-level rise, temperature warming, and atmospheric CO 2 increase. The phenological records are constructed using the longest continuous satellite-based record of the Earth's ecosystems, the Landsat data, and an advanced modeling technique, the nonlinear mixed model. We find that the length of the growing seasons of the intermediate and brackish marshes increased concomitantly with the atmospheric CO 2 concentration over the last 30 years, and predict that such changes will continue and accelerate in the future. These phenological changes suggest a potential increase in CO 2 uptake and thus a negative feedback mechanism to climate change. The areas of the freshwater and intermediate marshes were stable over the period studied, but the areas of the brackish and saline marshes decreased substantially, suggesting ecosystem instability and carbon storage loss under the anticipated sea-level rise. The marshes' phenological shifts portend their potentially critical role in climate mitigation, and the different responses among systems shed light on the underlying mechanisms of such changes.

14.
Environ Pollut ; 252(Pt B): 1367-1376, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31254894

ABSTRACT

We measured the temporal and spatial trajectory of oiling from the April, 2010, Deepwater Horizon oil spill in water from Louisiana's continental shelf, the estuarine waters of Barataria Bay, and in coastal marsh sediments. The concentrations of 28 target alkanes and 43 target polycyclic aromatic hydrocarbons were determined in water samples collected on 10 offshore cruises, in 19 water samples collected monthly one km offshore at 13 inshore stations in 2010 and 2013, and in 16-60 surficial marsh sediment samples collected on each of 26 trips. The concentration of total aromatics in offshore waters peaked in late summer, 2010, at 100 times above the May, 2010 values, which were already slightly contaminated. There were no differences in surface or bottom water samples. The concentration of total aromatics declined at a rate of 73% y-1 to 1/1000th of the May 2010 values by summer 2016. The concentrations inside the estuary were proportional to those one km offshore, but were 10-30% lower. The oil concentrations in sediments were initially different at 1 and 10 m distance into the marsh, but became equal after 2 years. Thus, the distinction between oiled and unoiled sites became blurred, if not non-existent then, and oiling had spread over an area wider than was visible initially. The concentrations of oil in sediments were 100-1000 times above the May 2010 values, and dropped to 10 times higher after 8 years, thereafter, demonstrating a long-term contamination by oil or oil residues that will remain for decades. The chemical signature of the oil residues offshore compared to in the marsh reflects the more aerobic offshore conditions and water-soluble tendencies of the dissolved components, whereas the anaerobic marsh sediments will retain the heavier molecular components for a long time, and have a consequential effect on the ecosystems.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Petroleum Pollution/analysis , Petroleum/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Bays/chemistry , Estuaries , Gulf of Mexico , Louisiana , Wetlands
15.
PLoS One ; 13(12): e0207717, 2018.
Article in English | MEDLINE | ID: mdl-30550603

ABSTRACT

We determined the number of permits for oil and gas activities in 14 coastal Louisiana parishes from 1900 to 2017, compared them to land loss on this coast, and estimated their restoration potential. A total of 76,247 oil and gas recovery wells were permitted, of which 35,163 (46%) were on land (as of 2010) and 27,483 of which are officially abandoned. There is a direct spatial and temporal relationship between the number of these permits and land loss, attributable to the above and belowground changes in hydrology resulting from the dredged material levees placed parallel to the canal (spoil banks). These hydrologic modifications cause various direct and indirect compromises to plants and soils resulting in wetland collapse. Although oil and gas recovery beneath southern Louisiana wetlands has dramatically declined since its peak in the early 1960s, it has left behind spoil banks with a total length sufficient to cross coastal Louisiana 79 times from east to west. Dragging down the remaining material in the spoil bank back into the canal is a successful restoration technique that is rarely applied in Louisiana, but could be a dramatically cost-effective and proven long-term strategy if political will prevails. The absence of a State or Federal backfilling program is a huge missed opportunity to: 1) conduct cost-effective restoration at a relatively low cost, and, 2) conduct systematic restoration monitoring and hypothesis testing that advances knowledge and improves the efficacy of future attempts. The price of backfilling all canals is about $335 million dollars, or 0.67% of the State's Master Plan for restoration and a pittance of the economic value gained from extracting the oil and gas beneath over the last 100 years.


Subject(s)
Conservation of Natural Resources/methods , Conservation of Water Resources/methods , Wetlands , Conservation of Natural Resources/economics , Conservation of Natural Resources/legislation & jurisprudence , Conservation of Water Resources/economics , Conservation of Water Resources/legislation & jurisprudence , Ecosystem , Geologic Sediments , Hydrology , Licensure , Louisiana , Oil and Gas Industry/economics , Oil and Gas Industry/legislation & jurisprudence
16.
PLoS One ; 12(9): e0184350, 2017.
Article in English | MEDLINE | ID: mdl-28880893

ABSTRACT

We quantified trends in the 1985 to 2015 summer bottom-water temperature on the northern Gulf of Mexico (nGOM) continental shelf for data collected at 88 stations with depths ranging from 3 to 63 m. The analysis was supplemented with monthly data collected from 1963 to 1965 in the same area. The seasonal summer peak in average bottom-water temperature varied concurrently with air temperature, but with a 2- to 5-month lag. The summer bottom-water temperature declined gradually with depth from 30 oC at stations closest to the shore, to 20 oC at the offshore edge of the study area, and increased an average 0.051 oC y-1 between1963 and 2015. The bottom-water warming in summer for all stations was 1.9 times faster compared to the rise in local summer air temperatures, and 6.4 times faster than the concurrent increase in annual global ocean sea surface temperatures. The annual rise in average summer bottom-water temperatures on the subtropical nGOM continental shelf is comparable to the few published temperature trend estimates from colder environments. These recent changes in the heat storage on the nGOM continental shelf will affect oxygen and carbon cycling, spatial distribution of fish and shrimp, and overall species diversity.


Subject(s)
Temperature , Ecosystem , Geologic Sediments/analysis , Gulf of Mexico , Seasons
17.
Appl Environ Microbiol ; 83(20)2017 10 15.
Article in English | MEDLINE | ID: mdl-28778895

ABSTRACT

Coastal salt marshes along the northern Gulf of Mexico shoreline received varied types and amounts of weathered oil residues after the 2010 Deepwater Horizon oil spill. At the time, predicting how marsh bacterial communities would respond and/or recover to oiling and other environmental stressors was difficult because baseline information on community composition and dynamics was generally unavailable. Here, we evaluated marsh vegetation, physicochemistry, flooding frequency, hydrocarbon chemistry, and subtidal sediment bacterial communities from 16S rRNA gene surveys at 11 sites in southern Louisiana before the oil spill and resampled the same marshes three to four times over 38 months after the spill. Calculated hydrocarbon biomarker indices indicated that oil replaced native natural organic matter (NOM) originating from Spartina alterniflora and marine phytoplankton in the marshes between May 2010 and September 2010. At all the studied marshes, the major class- and order-level shifts among the phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria occurred within these first 4 months, but another community shift occurred at the time of peak oiling in 2011. Two years later, hydrocarbon levels decreased and bacterial communities became more diverse, being dominated by Alphaproteobacteria (Rhizobiales), Chloroflexi (Dehalococcoidia), and Planctomycetes Compositional changes through time could be explained by NOM source differences, perhaps due to vegetation changes, as well as marsh flooding and salinity excursions linked to freshwater diversions. These findings indicate that persistent hydrocarbon exposure alone did not explain long-term community shifts.IMPORTANCE Significant deterioration of coastal salt marshes in Louisiana has been linked to natural and anthropogenic stressors that can adversely affect how ecosystems function. Although microorganisms carry out and regulate most biogeochemical reactions, the diversity of bacterial communities in coastal marshes is poorly known, with limited investigation of potential changes in bacterial communities in response to various environmental stressors. The Deepwater Horizon oil spill provided an unprecedented opportunity to study the long-term effects of an oil spill on microbial systems in marshes. Compared to previous studies, the significance of our research stems from (i) a broader geographic range of studied marshes, (ii) an extended time frame of data collection that includes prespill conditions, (iii) a more accurate procedure using biomarker indices to understand oiling, and (iv) an examination of other potential stressors linked to in situ environmental changes, aside from oil exposure.


Subject(s)
Bacteria/isolation & purification , Geologic Sediments/microbiology , Petroleum Pollution/analysis , Bacteria/classification , Bacteria/genetics , Biodiversity , Ecosystem , Geologic Sediments/chemistry , Louisiana , Phylogeny , Wetlands
18.
Proc Natl Acad Sci U S A ; 114(33): 8823-8828, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28760996

ABSTRACT

A large region of low-dissolved-oxygen bottom waters (hypoxia) forms nearly every summer in the northern Gulf of Mexico because of nutrient inputs from the Mississippi River Basin and water column stratification. Policymakers developed goals to reduce the area of hypoxic extent because of its ecological, economic, and commercial fisheries impacts. However, the goals remain elusive after 30 y of research and monitoring and 15 y of goal-setting and assessment because there has been little change in river nitrogen concentrations. An intergovernmental Task Force recently extended to 2035 the deadline for achieving the goal of a 5,000-km2 5-y average hypoxic zone and set an interim load target of a 20% reduction of the spring nitrogen loading from the Mississippi River by 2025 as part of their adaptive management process. The Task Force has asked modelers to reassess the loading reduction required to achieve the 2035 goal and to determine the effect of the 20% interim load reduction. Here, we address both questions using a probabilistic ensemble of four substantially different hypoxia models. Our results indicate that, under typical weather conditions, a 59% reduction in Mississippi River nitrogen load is required to reduce hypoxic area to 5,000 km2 The interim goal of a 20% load reduction is expected to produce an 18% reduction in hypoxic area over the long term. However, due to substantial interannual variability, a 25% load reduction is required before there is 95% certainty of observing any hypoxic area reduction between consecutive 5-y assessment periods.

19.
Mar Pollut Bull ; 110(1): 316-323, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27349381

ABSTRACT

Qualitative inferences and sparse bay-wide measurements suggest that shoreline erosion increased after the 2010 BP Deepwater Horizon (DWH) disaster, but quantifying the impacts has been elusive at the landscape scale. We quantified the shoreline erosion of 46 islands for before and after the DWH oil spill to determine how much shoreline was lost, if the losses were temporary, and if recovery/restoration occurred. The erosion rates at the oiled islands increased to 275% in the first six months after the oiling, were 200% of that of the unoiled islands for the first 2.5years after the oiling, and twelve times the average land loss in the deltaic plain of 0.4%y(-1) from 1988 to 2011. These results support the hypothesis that oiling compromised the belowground biomass of the emergent vegetation. The islands are, in effect, sentinels of marsh stability already in decline before the oil spill.


Subject(s)
Environment , Petroleum Pollution , Wetlands , Disasters , Gulf of Mexico , Islands , Louisiana , Soil
20.
Environ Sci Technol ; 50(10): 4940-50, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27088567

ABSTRACT

The characteristics of fluorescent components of dissolved organic matter (DOM) were examined using excitation emission matrix (EEM) fluorescence spectroscopy combined with parallel-factor analysis (PARAFAC) for seawater samples obtained from the northern Gulf of Mexico (NGoM) before, during, and after the 2010 Deepwater Horizon (DwH) oil spill. An EEMs PARAFAC modeling of samples collected within 16 km of the wellhead during the oil spill in May 2010, which included one typical subsurface sample with a PAH concentration of 1.09 µg/L, identified two humic-like and two previously reported oil-like components. Compared to prespill levels, however, there were order-of-magnitude higher fluorescence intensities associated with these components that are consistent with an oil-spill source. The spectral decomposition of the EEMs data using individual and combined data sets from coastal and offshore waters impacted by the DwH spill further revealed the changing nature of fluorescent DOM composition. Although the PAHs concentrations were at prespill conditions after the spill in 2012 and 2013 near the DwH site, the variable and anomalous levels of fluorescence intensities and DOC concentrations three years after the spill suggest the potential long-term persistence of the oil in the DOC pool in the NGoM.


Subject(s)
Petroleum Pollution , Seawater/chemistry , Gulf of Mexico , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...