Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Conserv Biol ; 38(1): e14154, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37489292

ABSTRACT

Human water use combined with a recent megadrought have reduced river and stream flow through the southwest United States and led to periodic drying of formerly perennial river segments. Reductions in snowmelt runoff and increased extent of drying collectively threaten short-lived, obligate aquatic species, including the endangered Rio Grande silvery minnow (Hybognathus amarus). This species is subject to boom-and-bust population dynamics, under which large fluctuations in abundance are expected to lower estimates of effective population size and erode genetic diversity over time. Rates of diversity loss are also affected by additions of hatchery-origin fish used to supplement the wild population. We used demographic and genetic data from wild and hatchery individuals to examine the relationship of genetic diversity and effective population size to abundance over the last two decades. Genetic diversity was low during the early 2000s, but diversity and demographic metrics stabilized after the hatchery program was initiated and environmental conditions improved. Yet, from 2017 onward, allelic diversity declined (Cohen's d = 1.34) and remained low despite hatchery stocking and brief wild population recovery. Across the time series, single-sample estimates of effective population size based on linkage disequilibrium (LD Ne ) were positively associated (r = 0.53) with wild abundance and total abundance, but as the proportion of hatchery-origin spawners increased, LD Ne declined (r = -0.55). Megadrought limited wild spawner abundance and precluded refreshment of hatchery brood stocks with wild fish; hence, we predict a riverine population increasingly dominated by hatchery-origin individuals and accelerated loss of genetic diversity despite supplementation. We recommend an adaptive and accelerated management plan that integrates river flow management and hatchery operations to slow the pace of genetic diversity loss exacerbated by megadrought.


El uso humano del agua, combinado con una megasequía reciente, ha reducido el flujo de los ríos y arroyos en el suroeste de los Estados Unidos y ha provocado la seca periódica de segmentos de ríos que antes eran perennes. Las reducciones en la escorrentía del deshielo y el aumento de la sequía amenazan colectivamente a especies obligatoriamente acuáticas de vida corta, incluyendo la amenazada carpa chamizal (Hybognathus amarus). Esta especie está sujeta a una dinámica poblacional de explosión y colapso, bajo la cual se espera que grandes fluctuaciones en la abundancia reduzcan las estimaciones del tamaño efectivo de la población y erosionen la diversidad genética con el tiempo. Las tasas de pérdida de la diversidad también se ven afectadas por la adición de peces procedentes de criaderos usados para suplementar la población silvestre. Utilizamos datos demográficos y genéticos de individuos silvestres y de criaderos para examinar la relación entre la diversidad genética y el tamaño efectivo de la población con la abundancia durante las últimas dos décadas. La diversidad genética fue baja a principios de los 2000, pero las métricas de diversidad y demografía estabilizaron después de que se inició el programa de criadero y mejoraron las condiciones ambientales. Sin embargo, a partir de 2017, la diversidad alélica disminuyó (d de Cohen = 1,34) y se mantuvo baja a pesar de la suplementación con individuos de criaderos y la breve recuperación de la población silvestre. A lo largo del tiempo, las estimativas de muestras individuales del tamaño efectivo de la población basados en el desequilibrio de ligamiento (LD Ne) estaban asociadas positivamente (r = 0,53) con la abundancia silvestre y la abundancia total, pero a medida que la proporción de desovadores originados en criaderos aumentó, el LD Ne disminuyó (r = -0,55). La megasequía limitó la abundancia de desovadores silvestres e impidió el reabastecimiento de las poblaciones en cautiverio con peces silvestres; por lo tanto, predecimos una población ribereña cada vez más dominada por individuos procedentes de criaderos y una pérdida acelerada de diversidad genética a pesar de la suplementación. Recomendamos un plan de gestión adaptativo y acelerado que integre la gestión del caudal del río y las operaciones de criaderos para frenar el ritmo de pérdida de diversidad genética exacerbada por la megasequía.


Subject(s)
Cyprinidae , Genetic Variation , Humans , Animals , Conservation of Natural Resources , Cyprinidae/genetics , Rivers , Breeding
2.
Bioscience ; 73(7): 479-493, 2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37841229

ABSTRACT

Biodiversity collections are experiencing a renaissance fueled by the intersection of informatics, emerging technologies, and the extended use and interpretation of specimens and archived databases. In this article, we explore the potential for transformative research in ecology integrating biodiversity collections, stable isotope analysis (SIA), and environmental informatics. Like genomic DNA, SIA provides a common currency interpreted in the context of biogeochemical principles. Integration of SIA data across collections allows for evaluation of long-term ecological change at local to continental scales. Challenges including the analysis of sparse samples, a lack of information about baseline isotopic composition, and the effects of preservation remain, but none of these challenges is insurmountable. The proposed research framework interfaces with existing databases and observatories to provide benchmarks for retrospective studies and ecological forecasting. Collections and SIA add historical context to fundamental questions in freshwater ecological research, reference points for ecosystem monitoring, and a means of quantitative assessment for ecosystem restoration.

3.
Mitochondrial DNA B Resour ; 8(8): 809-814, 2023.
Article in English | MEDLINE | ID: mdl-37539012

ABSTRACT

Macrhybopsis tetranema and Oncorhynchus gilae are fish species endemic to the Southwestern United States. We present the complete mitochondrial genomes for these species. Each genome consisted of 13 protein-coding genes, two ribosomal (rRNA) genes, 22 transfer RNA (tRNA) genes, and the control region (D-loop). Mitogenome lengths were 16,916 base pairs (bp) for M. tetranema, and 16,976 bp for O. gilae. The GC content was 41% for M. tetranema and 46% for O. gilae. The relationships of M. tetranema and O. gilae were consistent with previous phylogenetic analyses.

4.
G3 (Bethesda) ; 13(10)2023 09 30.
Article in English | MEDLINE | ID: mdl-37466215

ABSTRACT

North American minnows (Cypriniformes: Leuciscidae) comprise a diverse taxonomic group, but many members, particularly those inhabiting deserts, face elevated extinction risks. Despite conservation concerns, leuciscids remain under sampled for reference assemblies relative to other groups of freshwater fishes. Here, we present 2 chromosome-scale reference genome assemblies spikedace (Meda fulgida) and loach minnow (Tiaroga cobitis) using PacBio, Illumina and Omni-C technologies. The complete assembly for spikedace was 882.1 Mb in total length comprised of 83 scaffolds with N50 = 34.8 Mb, L50 = 11, N75 = 32.3 Mb, and L75 = 18. The complete assembly for loach minnow was 1.3 Gb in total length comprised of 550 scaffolds with N50 = 48.6 Mb, L50 = 13, N75 = 42.3 Mb, and L75 = 20. Completeness assessed via Benchmarking Universal Single-Copy Orthologues (BUSCO) metrics using the Actinopterygii BUSCO database showed ∼97% for spikedace and ∼98% for loach minnow of complete BUSCO proportions. Annotation revealed approximately 32.58 and 29.04% of spikedace and loach minnow total genome lengths to be comprised of protein-coding genes, respectively. Comparative genomic analyses of these endangered and co-distributed fishes revealed widespread structural variants, gene family expansions, and evidence of positive selection in both genomes.


Subject(s)
Cyprinidae , Fishes , Animals , Fishes/genetics , Chromosomes , Genome , Cyprinidae/genetics , Molecular Sequence Annotation
5.
J Hered ; 114(5): 470-487, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37347974

ABSTRACT

Sex determination systems and genetic sex differentiation across fishes are highly diverse but are unknown for most Cypriniformes, including Rio Grande silvery minnow (Hybognathus amarus). In this study, we aimed to detect and validate sex-linked markers to infer sex determination system and to demonstrate the utility of combining several methods for sex-linked marker detection in nonmodel organisms. To identify potential sex-linked markers, Nextera-tagmented reductively amplified DNA (nextRAD) libraries were generated from 66 females, 64 males, and 60 larvae of unknown sex. These data were combined with female and male de novo genomes from Nanopore long-read sequences. We identified five potential unique male nextRAD-tags and one potential unique male contig, suggesting an XY sex determination system. We also identified two single-nucleotide polymorphisms (SNPs) in the same contig with values of FST, allele frequencies, and heterozygosity conforming with expectations of an XY system. Through PCR we validated the marker containing the sex-linked SNPs and a single nextRAD-tag sex-associated marker but it was not male specific. Instead, more copies of this locus in the male genome were suggested by enhanced amplification in males. Results are consistent with an XY system with low differentiation between sex-determining regions. Further research is needed to confirm the level of differentiation between the sex chromosomes. Nonetheless, this study highlighted the power of combining reduced representation and whole-genome sequencing for identifying sex-linked markers, especially when reduced representation sequencing does not include extensive variation between sexes, either because such variation is not present or not captured.


Subject(s)
Cypriniformes , Male , Animals , Female , Cypriniformes/genetics , Y Chromosome , Genome , Sex Chromosomes/genetics , Genetic Drift , Genetic Markers , Sex Determination Processes/genetics
6.
Mol Ecol ; 32(2): 316-334, 2023 01.
Article in English | MEDLINE | ID: mdl-36321869

ABSTRACT

Many long-term genetic monitoring programmes began before next-generation sequencing became widely available. Older programmes can now transition to new marker systems usually consisting of 1000s of SNP loci, but there are still important questions about comparability, precision, and accuracy of key metrics estimated using SNPs. Ideally, transitioned programmes should capitalize on new information without sacrificing continuity of inference across the time series. We combined existing microsatellite-based genetic monitoring information with SNP-based microhaplotypes obtained from archived samples of Rio Grande silvery minnow (Hybognathus amarus) across a 20-year time series to evaluate point estimates and trajectories of key genetic metrics. Demographic and genetic monitoring bracketed multiple collapses of the wild population and included cases where captive-born repatriates comprised the majority of spawners in the wild. Even with smaller sample sizes, microhaplotypes yielded comparable and in some cases more precise estimates of variance genetic effective population size, multilocus heterozygosity and inbreeding compared to microsatellites because many more microhaplotype loci were available. Microhaplotypes also recorded shifts in allele frequencies associated with population bottlenecks. Trends in microhaplotype-based inbreeding metrics were associated with the fraction of hatchery-reared repatriates to the wild and should be incorporated into future genomic monitoring. Although differences in accuracy and precision of some metrics were observed between marker types, biological inferences and management recommendations were consistent.


Subject(s)
Genetics, Population , Polymorphism, Single Nucleotide , Polymorphism, Single Nucleotide/genetics , Gene Frequency , Inbreeding , Microsatellite Repeats
7.
Am Nat ; 200(2): 275-291, 2022 08.
Article in English | MEDLINE | ID: mdl-35905398

ABSTRACT

AbstractPatterns of genetic diversity and effective size should be predicted by life history traits (intrinsic), landscape properties (extrinsic), and population dynamics. Theoretical models portray complicated relationships among population subdivision, rates of extirpation and recolonization, and metapopulation genetic effective size (metaNe) but make simplifying assumptions about effects of intrinsic and extrinsic factors. Using previously published data sets, we compared estimates of genetic effective size to demographic time-series data gathered for nine dominant species in a desert stream fish community. These species occupy a common desert stream network and experience the same disturbance regime but differ in abundance, distribution, and life history traits that should affect reproduction, dispersal, local persistence, and genetic diversity patterns. Measures of genetic effective size were positively related to network-wide abundance and mean adult density across species and were negatively related to extirpation probability. Comparative data supported the theoretical prediction that population subdivision decreases metapopulation genetic effective size relative to panmictic populations of the same size. Estimates of metaNe reflected differences in intrinsic traits and population dynamics across species measured over ecological timescales. This comparative study exemplifies why ecological differences are important considerations when seeking to preserve genetic diversity.


Subject(s)
Genetics, Population , Rivers , Animals , Ecosystem , Fishes/genetics , Genetic Variation , Population Dynamics , Reproduction
8.
Mitochondrial DNA B Resour ; 5(3): 2368-2370, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-33457794

ABSTRACT

Gila elegans, Hybognathus amarus, and Tiaroga cobitis (Family Cyprinidae, Order Cypriniformes) are endemic and endangered fishes in the southwestern United States. We present complete mitochondrial genomes for each species. Each mitochondrion consisted of 13 protein-coding genes, 2 ribosomal (rRNA) genes, 22 transfer RNA (tRNA) genes, and a single control region (D-loop), and gene order was consistent with other cyprinid fishes. Total genome lengths were 16,593 base pairs (bp) for G. elegans, 16,705 bp for H. amarus, and 16,802 for T. cobitis. The GC content in G. elegans and H. amarus was 44%, but higher in T. cobitis at 48%. Phylogenetic trees were generated to confirm relationships inferred via novel mitogenomes, and best-supported trees were consistent with previous research.

9.
PeerJ ; 7: e6149, 2019.
Article in English | MEDLINE | ID: mdl-30627490

ABSTRACT

Coastal habitats in Chile are hypothesized to support a number of diadromous fish species. The objective of this study was to document migratory life histories of native galaxiids and introduced salmonids from a wide latitudinal range in Chilean Patagonia (39-48°S). Otolith microchemistry data were analysed using a recursive partitioning approach to test for diadromy. Based on annular analysis of Sr:Ca ratios, a diadromous life history was suggested for populations of native Aplochiton taeniatus, A. marinus, and Galaxias maculatus. Lifetime residency in freshwater was suggested for populations of A. zebra and G. platei. Among introduced salmonids, populations of Oncorhynchus tshawytscha and O. kisutch exhibited patterns consistent with anadromy, whereas the screened population of O. mykiss appeared restricted to freshwater. Salmo trutta exhibited variable patterns suggesting freshwater residency and possibly anadromy in one case. The capacity and geographic scope of hydropower development is increasing and may disrupt migratory routes of diadromous fishes. Identification of diadromous species is a critical first step for preventing their loss due to hydropower development.

10.
DNA Res ; 25(1): 11-23, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-28985264

ABSTRACT

Comparative transcriptomics can now be conducted on organisms in natural settings, which has greatly enhanced understanding of genome-environment interactions. Here, we demonstrate the utility and potential pitfalls of comparative transcriptomics of wild organisms, with an example from three cyprinid fish species (Teleostei:Cypriniformes). We present extensively filtered and annotated transcriptome assemblies that provide a valuable resource for studies of genome evolution (e.g. polyploidy), ecological and morphological diversification, speciation, and shared and unique responses to environmental variation in cyprinid fishes. Our results and analyses address the following points: (i) 'essential developmental genes' are shown to be ubiquitously expressed in a diverse suite of tissues across later ontogenetic stages (i.e. juveniles and adults), making these genes are useful for assessing the quality of transcriptome assemblies, (ii) the influence of microbiomes and other exogenous DNA, (iii) potentially novel, species-specific genes, and (iv) genomic rearrangements (e.g. whole genome duplication). The data we present provide a resource for future comparative work in cypriniform fishes and other taxa across a variety of sub-disciplines, including stress response, morphological diversification, community ecology, ecotoxicology, and climate change.

11.
Trans Am Fish Soc ; 147(6): 1100-1114, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30774144

ABSTRACT

Studying the reproductive ecology of aggregate broadcast spawning fishes is difficult because it generally is not feasible to sample all potential parents and unambiguously assign their offspring. We used molecular-based parentage analysis to gain insights into the reproductive ecology of the endangered Bonytail, and to evaluate whether protected off-channel habitats could be used as an alternative to hatchery production. By genotyping adults and offspring stocked (n = 4130) into two experimental backwaters across three years, we determined that most adults (82-97%) contributed to progeny production across years and backwaters, with one exception. Both sexes mated multiply and the number of mates and family size were positively correlated. There was also a positive correlation between adult size and metrics of reproductive success. There were strong interactions between sample years and backwaters suggesting that environmental factors are the primary driver of variance in reproductive success. Knowledge of mating systems and sources of variance in reproductive success is important for management of endangered fish because high variance in reproductive success leads to substantial losses of genetic variation when few individuals reproduce successfully. Although variance in reproductive success was observed, most adults contributed to genetically diverse progeny in experimental backwaters. These results support the use of predator-free, but otherwise natural, backwaters as an effective conservation tool for reintroducing Bonytail to its native habitat.

12.
Mol Ecol ; 26(10): 2687-2697, 2017 May.
Article in English | MEDLINE | ID: mdl-28247452

ABSTRACT

Dendritic ecological network (DEN) architecture can be a strong predictor of spatial genetic patterns in theoretical and simulation studies. Yet, interspecific differences in dispersal capabilities and distribution within the network may equally affect species' genetic structuring. We characterized patterns of genetic variation from up to ten microsatellite loci for nine numerically dominant members of the upper Gila River fish community, New Mexico, USA. Using comparative landscape genetics, we evaluated the role of network architecture for structuring populations within species (pairwise FST ) while explicitly accounting for intraspecific demographic influences on effective population size (Ne ). Five species exhibited patterns of connectivity and/or genetic diversity gradients that were predicted by network structure. These species were generally considered to be small-bodied or habitat specialists. Spatial variation of Ne was a strong predictor of pairwise FST for two species, suggesting patterns of connectivity may also be influenced by genetic drift independent of network properties. Finally, two study species exhibited genetic patterns that were unexplained by network properties and appeared to be related to nonequilibrium processes. Properties of DENs shape community-wide genetic structure but effects are modified by intrinsic traits and nonequilibrium processes. Further theoretical development of the DEN framework should account for such cases.


Subject(s)
Ecosystem , Fishes/genetics , Genetic Variation , Genetics, Population , Animals , Microsatellite Repeats , New Mexico , Population Density , Rivers
13.
Mol Ecol ; 26(2): 471-489, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27864911

ABSTRACT

Climate change will strongly impact aquatic ecosystems particularly in arid and semi-arid regions. Fish-parasite interactions will also be affected by predicted altered flow and temperature regimes, and other environmental stressors. Hence, identifying environmental and genetic factors associated with maintaining diversity at immune genes is critical for understanding species' adaptive capacity. Here, we combine genetic (MHC class IIß and microsatellites), parasitological and ecological data to explore the relationship between these factors in the remnant wild Rio Grande silvery minnow (Hybognathus amarus) population, an endangered species found in the southwestern United States. Infections with multiple parasites on the gills were observed and there was spatio-temporal variation in parasite communities and patterns of infection among individuals. Despite its highly endangered status and chronically low genetic effective size, Rio Grande silvery minnow had high allelic diversity at MHC class IIß with more alleles recognized at the presumptive DAB1 locus compared to the DAB3 locus. We identified significant associations between specific parasites and MHC alleles against a backdrop of generalist parasite prevalence. We also found that individuals with higher individual neutral heterozygosity and higher amino acid divergence between MHC alleles had lower parasite abundance and diversity. Taken together, these results suggest a role for fluctuating selection imposed by spatio-temporal variation in pathogen communities and divergent allele advantage in maintenance of high MHC polymorphism. Understanding the complex interaction of habitat, pathogens and immunity in protected species will require integrated experimental, genetic and field studies.


Subject(s)
Cyprinidae/genetics , Cyprinidae/parasitology , Genes, MHC Class II , Genetic Variation , Parasites , Animals , Climate Change , Endangered Species , Microsatellite Repeats , Southwestern United States , Spatio-Temporal Analysis
14.
J Hered ; 107(6): 567-72, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27225935

ABSTRACT

As with many endangered, long-lived iteroparous fishes, survival of razorback sucker depends on a management strategy that circumvents recruitment failure that results from predation by non-native fishes. In Lake Mohave, AZ-NV, management of razorback sucker centers on capture of larvae spawned in the lake, rearing them in off-channel habitats, and subsequent release ("repatriation") to the lake when adults are sufficiently large to resist predation. The effects of this strategy on genetic diversity, however, remained uncertain. After correction for differences in sample size among groups, metrics of mitochondrial DNA (mtDNA; number of haplotypes, N H , and haplotype diversity, H D ) and microsatellite (number of alleles, N A , and expected heterozygosity, H E ) diversity did not differ significantly between annual samples of repatriated adults and larval year-classes or among pooled samples of repatriated adults, larvae, and wild fish. These findings indicate that the current management program thus far maintained historical genetic variation of razorback sucker in the lake. Because effective population size, N e , is closely tied to the small census population size (N c = ~1500-3000) of razorback sucker in Lake Mohave, this population will remain at risk from genetic, as well as demographic risk of extinction unless N c is increased substantially.


Subject(s)
Endangered Species , Fishes/genetics , Genetic Variation , Genetics, Population , Alleles , Animals , DNA, Mitochondrial , Microsatellite Repeats
15.
Biol J Linn Soc Lond ; 117(2): 264-284, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26858464

ABSTRACT

Thorough sampling is necessary to delineate lineage diversity for polytypic "species" such as Cyprinella lutrensis. We conducted extensive mtDNA sampling (cytochrome b and ND4) from the Pecos River, Rio Grande, and South Canadian River, New Mexico. Our study emphasized the Pecos River due to its complex geological history and potential to harbor multiple lineages. We used geometric-morphometric, morphometric, and meristic analyses to test for phenotypic divergence and combined nucDNA with mtDNA to test for cytonuclear disequilibrium and combined our sequences with published data to conduct a phylogenetic re-assessment of the entire C. lutrensis clade. We detected five co-occurring mtDNA lineages in the Pecos River, but no evidence for cytonuclear disequilibrium or phenotypic divergence. Recognized species were interspersed amongst divergent lineages of "C. lutrensis". Allopatric divergence among drainages isolated in the Late Miocene and Pliocene apparently produced several recognized species and major divisions within "C. lutrensis". Pleistocene re-expansion and subsequent re-fragmentation of a centralized lineage founded younger, divergent lineages throughout the Rio Grande basin and Edwards Plateau. There is also evidence of recent introductions to the Rio Grande, Pecos and South Canadian Rivers. Nonetheless, deeply divergent lineages have coexisted since the Pleistocene.

16.
Ecology ; 96(12): 3213-26, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26909427

ABSTRACT

Disruption of natural flow regimes, nutrient pollution, and other consequences of human population growth and development have impacted most major rivers of the world. Alarming losses of aquatic biodiversity coincide with human-caused river alteration, but effects of biotic homogenization on aquatic ecosystem processes are not as well documented. This is because unaltered systems for comparison are scarce, and some ecosystem-wide effects may take decades to manifest. We evaluated aquatic ecosystem responses to extensive river- floodplain engineering and nutrient addition in the Rio Grande of southwestern North America as revealed by changes in trophic structure of, and resource availability to, the fish community. Stable Isotope Analysis (SIA) was conducted on museum-preserved fishes collected over a 70-year period of intensive river management and exponential human population growth. Trophic complexity and resource heterogeneity for fish consumers (measured as "isotopic niche breadth") decreased following sediment deprivation and channelization, and these effects persist into the present. Increased nutrient inputs led to δ15N enrichment in the entire fish community at all affected sites, and a shift to autochthonous sources of carbon at the most proximal site downstream of wastewater release, probably via bottom-up transfer. Overall, retrospective SIA of apex consumers suggests radical change and functional impairment of a floodplain river ecosystem already marked by significant biodiversity loss.


Subject(s)
Ecosystem , Environmental Monitoring/methods , Fishes/physiology , Human Activities , Rivers , Animals , Data Interpretation, Statistical , Fishes/metabolism , Isotopes , New Mexico , Time Factors , Water Pollution
17.
Mol Ecol ; 23(23): 5663-79, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25327780

ABSTRACT

We used comparative landscape genetics to examine the relative roles of historical events, intrinsic traits and landscape factors in determining the distribution of genetic diversity of river fishes across the North American Great Plains. Spatial patterns of diversity were overlaid on a patch-based graphical model and then compared within and among three species that co-occurred across five Great Plains watersheds. Species differing in reproductive strategy (benthic vs. pelagic-spawning) were hypothesized to have different patterns of genetic diversity, but the overriding factor shaping contemporary patterns of diversity was the signature of past climates and geological history. Allelic diversity was significantly higher at southern latitudes for Cyprinella lutrensis and Hybognathus placitus, consistent with northward expansion from southern Pleistocene refugia. Within the historical context, all species exhibited lowered occupancy and abundance in heavily fragmented and drier upstream reaches, particularly H. placitus; a pelagic-spawning species, suggesting rates of extirpation have outpaced losses of genetic diversity in this species. Within most tributary basins, genetically diverse populations of each species persisted. Hence, reconnecting genetically diverse populations with those characterized by reduced diversity (regardless of their position within the riverine network) would provide populations with greater genetic and demographic resilience. We discuss cases where cross-basin transfer may be appropriate to enhance genetic diversity and mitigate negative effects of climate change. Overall, striking similarities in genetic patterns and in response to fragmentation and dewatering suggest a common strategy for genetic resource management in this unique riverine fish assemblage.


Subject(s)
Conservation of Natural Resources , Fishes/genetics , Genetic Variation , Genetics, Population , Animals , Biota , Environment , Fishes/classification , Microsatellite Repeats , North America , Rivers , Sequence Analysis, DNA
18.
Evol Appl ; 7(3): 339-54, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24665337

ABSTRACT

Time-series analysis is used widely in ecology to study complex phenomena and may have considerable potential to clarify relationships of genetic and demographic processes in natural and exploited populations. We explored the utility of this approach to evaluate population responses to management in razorback sucker, a long-lived and fecund, but declining freshwater fish species. A core population in Lake Mohave (Arizona-Nevada, USA) has experienced no natural recruitment for decades and is maintained by harvesting naturally produced larvae from the lake, rearing them in protective custody, and repatriating them at sizes less vulnerable to predation. Analyses of mtDNA and 15 microsatellites characterized for sequential larval cohorts collected over a 15-year time series revealed no changes in geographic structuring but indicated significant increase in mtDNA diversity for the entire population over time. Likewise, ratios of annual effective breeders to annual census size (N b /N a) increased significantly despite sevenfold reduction of N a. These results indicated that conservation actions diminished near-term extinction risk due to genetic factors and should now focus on increasing numbers of fish in Lake Mohave to ameliorate longer-term risks. More generally, time-series analysis permitted robust testing of trends in genetic diversity, despite low precision of some metrics.

19.
J Hered ; 105(3): 407-15, 2014.
Article in English | MEDLINE | ID: mdl-24558102

ABSTRACT

Genetic determinants of seasonal reproduction are not fully understood but may be important predictors of organism responses to climate change. We used a comparative approach to study the evolution of seasonal timing within a fish community in a natural common garden setting. We tested the hypothesis that allelic length variation in the PolyQ domain of a circadian rhythm gene, Clock1a, corresponded to interspecific differences in seasonal reproductive timing across 5 native and 1 introduced cyprinid fishes (n = 425 individuals) that co-occur in the Rio Grande, NM, USA. Most common allele lengths were longer in native species that initiated reproduction earlier (Spearman's r = -0.70, P = 0.23). Clock1a allele length exhibited strong phylogenetic signal and earlier spawners were evolutionarily derived. Aside from length variation in Clock1a, all other amino acids were identical across native species, suggesting functional constraint over evolutionary time. Interestingly, the endangered Rio Grande silvery minnow (Hybognathus amarus) exhibited less allelic variation in Clock1a and observed heterozygosity was 2- to 6-fold lower than the 5 other (nonimperiled) species. Reduced genetic variation in this functionally important gene may impede this species' capacity to respond to ongoing environmental change.


Subject(s)
Adaptation, Physiological/genetics , Biological Clocks/genetics , CLOCK Proteins/genetics , Circadian Rhythm/genetics , Cyprinidae/genetics , Amino Acid Sequence , Animals , Base Sequence , Biological Evolution , Climate Change , Evolution, Molecular , Genetic Variation , Molecular Sequence Data , Phylogeny , Seasons , Sequence Analysis, DNA
20.
J Hered ; 104(3): 437-46, 2013.
Article in English | MEDLINE | ID: mdl-23519867

ABSTRACT

Captive breeding and rearing are central elements in conservation, management, and recovery planning for many endangered species including Rio Grande Silvery Minnow, a North American freshwater cyprinid. Traditionally, the sole purpose of hatcheries was to produce as many fish as feasible for stocking and harvest. Production quotas are also an important consideration in hatchery programs for endangered species, but they must also maintain and maximize genetic diversity of fish produced through implementation of best breeding practices. Here, we assessed genetic outcomes and measures of productivity (number of eggs and larval viability) for three replicates of three mating designs that are used for this small, pelagic-spawning fish. These were 1) monogamous mating, 2) hormone-induced communal spawning, and 3) environmentally cued communal spawning. A total of 180 broodstock and 450 progeny were genotyped. Genetic diversity and egg productivity did not differ significantly among spawning designs (H e : F = 0.52, P = 0.67; H o : F = 0.12, P = 0.89; number of eggs: F = 3.59, P = 0.09), and there was evidence for variance in reproductive success among individuals in all three designs. Allelic richness declined from the broodstock to progeny generation in all breeding designs. There was no significant difference in the genetic effective size (regardless of the method used) among designs. Significantly more viable eggs were produced in environmentally cued communal spawn compared to the alternative strategies (F = 5.72, P = 0.04), but this strategy is the most difficult to implement.


Subject(s)
Breeding/methods , Cyprinidae/genetics , Genetic Variation , Animals , Endangered Species , Female , Fresh Water , Male , Ovum , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...