Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38475339

ABSTRACT

Achieving commercially acceptable Zn-MnO2 rechargeable batteries depends on the reversibility of active zinc and manganese materials, and avoiding side reactions during the second electron reaction of MnO2. Typically, liquid electrolytes such as potassium hydroxide (KOH) are used for Zn-MnO2 rechargeable batteries. However, it is known that using liquid electrolytes causes the formation of electrochemically inactive materials, such as precipitation Mn3O4 or ZnMn2O4 resulting from the uncontrollable reaction of Mn3+ dissolved species with zincate ions. In this paper, hydrogel electrolytes are tested for MnO2 electrodes undergoing two-electron cycling. Improved cell safety is achieved because the hydrogel electrolyte is non-spillable, according to standards from the US Department of Transportation (DOT). The cycling of "half cells" with advanced-formulation MnO2 cathodes paired with commercial NiOOH electrodes is tested with hydrogel and a normal electrolyte, to detect changes to the zincate crossover and reaction from anode to cathode. These half cells achieved ≥700 cycles with 99% coulombic efficiency and 63% energy efficiency at C/3 rates based on the second electron capacity of MnO2. Other cycling tests with "full cells" of Zn anodes with the same MnO2 cathodes achieved ~300 cycles until reaching 50% capacity fade, a comparable performance to cells using liquid electrolyte. Electrodes dissected after cycling showed that the liquid electrolyte allowed Cu ions to migrate more than the hydrogel electrolyte. However, measurements of the Cu diffusion coefficient showed no difference between liquid and gel electrolytes; thus, it was hypothesized that the gel electrolytes reduced the occurrence of Cu short circuits by either (a) reducing electrode physical contact to the separator or (b) reducing electro-convective electrolyte transport that may be as important as diffusive transport.

2.
Mater Horiz ; 9(8): 2160-2171, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35642734

ABSTRACT

Zinc (Zn)-anode batteries, although safe and non-flammable, are precluded from promising applications because of their low voltage (<2 V) and poor rechargeability. Here, we report the fabrication of rechargeable membrane-less Zn-anode batteries with high voltage properties (2.5 to 3.4 V) achieved through coupling cathodes and Zn-anodes in gelled concentrated acid and alkaline solutions separated by a gelled buffer interlayer containing the working ions. The concentrated gelled buffer interlayers perform dual functions of regulating the pH of the system and acting as the source and sink of the working ions. With this strategy we show low-cost membrane-less 2.5 to 3.4 V Zn-manganese dioxide (MnO2) batteries capable of cycling 10-100% of 617 mA h g-1-MnO2 and 20-30% of 820 mA h g-1-Zn and demonstrate their application in electric vehicles. This strategy is then applied to other oxide-based cathode systems like Cu2O and V2O5, where voltages of 2 to 3 V are obtained in membrane-less batteries.

3.
Polymers (Basel) ; 14(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35160407

ABSTRACT

Zinc (Zn)-manganese dioxide (MnO2) rechargeable batteries have attracted research interest because of high specific theoretical capacity as well as being environmentally friendly, intrinsically safe and low-cost. Liquid electrolytes, such as potassium hydroxide, are historically used in these batteries; however, many failure mechanisms of the Zn-MnO2 battery chemistry result from the use of liquid electrolytes, including the formation of electrochemically inert phases such as hetaerolite (ZnMn2O4) and the promotion of shape change of the Zn electrode. This manuscript reports on the fundamental and commercial results of gel electrolytes for use in rechargeable Zn-MnO2 batteries as an alternative to liquid electrolytes. The manuscript also reports on novel properties of the gelled electrolyte such as limiting the overdischarge of Zn anodes, which is a problem in liquid electrolyte, and finally its use in solar microgrid applications, which is a first in academic literature. Potentiostatic and galvanostatic tests with the optimized gel electrolyte showed higher capacity retention compared to the tests with the liquid electrolyte, suggesting that gel electrolyte helps reduce Mn3+ dissolution and zincate ion migration from the Zn anode, improving reversibility. Cycling tests for commercially sized prismatic cells showed the gel electrolyte had exceptional cycle life, showing 100% capacity retention for >700 cycles at 9.5 Ah and for >300 cycles at 19 Ah, while the 19 Ah prismatic cell with a liquid electrolyte showed discharge capacity degradation at 100th cycle. We also performed overdischarge protection tests, in which a commercialized prismatic cell with the gel electrolyte was discharged to 0 V and achieved stable discharge capacities, while the liquid electrolyte cell showed discharge capacity fade in the first few cycles. Finally, the gel electrolyte batteries were tested under IEC solar off-grid protocol. It was noted that the gelled Zn-MnO2 batteries outperformed the Pb-acid batteries. Additionally, a designed system nameplated at 2 kWh with a 12 V system with 72 prismatic cells was tested with the same protocol, and it has entered its third year of cycling. This suggests that Zn-MnO2 rechargeable batteries with the gel electrolyte will be an ideal candidate for solar microgrid systems and grid storage in general.

4.
Nat Commun ; 8: 14424, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28262697

ABSTRACT

Manganese dioxide cathodes are inexpensive and have high theoretical capacity (based on two electrons) of 617 mAh g-1, making them attractive for low-cost, energy-dense batteries. They are used in non-rechargeable batteries with anodes like zinc. Only ∼10% of the theoretical capacity is currently accessible in rechargeable alkaline systems. Attempts to access the full capacity using additives have been unsuccessful. We report a class of Bi-birnessite (a layered manganese oxide polymorph mixed with bismuth oxide (Bi2O3)) cathodes intercalated with Cu2+ that deliver near-full two-electron capacity reversibly for >6,000 cycles. The key to rechargeability lies in exploiting the redox potentials of Cu to reversibly intercalate into the Bi-birnessite-layered structure during its dissolution and precipitation process for stabilizing and enhancing its charge transfer characteristics. This process holds promise for other applications like catalysis and intercalation of metal ions into layered structures. A large prismatic rechargeable Zn-birnessite cell delivering ∼140 Wh l-1 is shown.

SELECTION OF CITATIONS
SEARCH DETAIL
...