Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 21(25): 13668-13678, 2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31190036

ABSTRACT

Cyanopropyne, CH3-C[triple bond, length as m-dash]C-CN, is a simple molecule whose photochemistry is still unexplored. Here we investigate the UV photolysis of this astrophysically significant nitrile trapped in solid argon. The FTIR study was assisted with 15N-isotopic substitution data and with DFT-level computations including the analyses of ground- and excited-state potential energy surfaces. Cyanopropyne was found to decay mainly via a two-step isomerization process. Infrared absorption spectra evolved to show signals from allenyl cyanide, CH2[double bond, length as m-dash]C[double bond, length as m-dash]CH-CN, which then further convert into propargyl cyanide, H-C[triple bond, length as m-dash]C-CH2-CN. Some evidence for the presence of allenyl isocyanide, propargyl isocyanide, 3-cyanocyclopropene, and 1,2,3-butatrien-1-imine under particular experimental conditions was also observed. Although cyano/isocyano interconversion has been observed during photolysis of other closely related species in solid argon matrices, including H-C[triple bond, length as m-dash]C-CN, no evidence could be found for production of 1-isocyano-1-propyne, CH3-C[triple bond, length as m-dash]C-NC for these experiments.

2.
J Phys Chem A ; 121(39): 7374-7384, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28873300

ABSTRACT

HC9N is a molecule of astrochemical interest. In this study, it was produced in cryogenic Ar and Kr matrices from UV-photolyzed diacetylene/cyanodiacetylene mixtures. Its strong phosphorescence was discovered and served for the identification of the compound. Vibrationally resolved phosphorescence excitation spectra gave insight into excited singlet electronic states. Two electronic systems were observed around 26 000-34 000 cm-1 and 35 000-50 000 cm-1. Energies of the second excited singlet and the lowest triplet state were derived from analysis of these systems. Vibrational and electronic spectroscopic features were assigned with the assistance of density functional theory calculations. Some trends concerning the electronic spectroscopy of HC2n+1N family molecules are presented.

3.
Chemphyschem ; 17(24): 4068-4078, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27917583

ABSTRACT

The results of a study devoted to the electronic spectroscopy of gaseous, solid, and cryogenic matrix-isolated methylcyanodiacetylene (CH3 C5 N) are reported. UV absorption and optical phosphorescence spectra of the compound are described here for the first time, and the corresponding vibronic assignments are proposed. UV absorption, studied directly or through the excitation of phosphorescence, revealed the B˜ 1 E--X˜ 1 A1 system, very weak A˜ 1 A2 -X˜ 1 A1 bands, and a strong, broad absorption feature, tentatively identified as D˜ 1 E-X˜ 1 A1 . Spectral measurements were assisted by quantum chemical calculations at the DFT and ab initio (coupled cluster) levels of theory.

4.
Chemphyschem ; 17(19): 3047-3054, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27356270

ABSTRACT

A spectroscopic study combining IR absorption and Raman scattering is presented for methylcyanodiacetylene (CH3 C5 N). Gas-phase, cryogenic matrix-isolated, and pure solid-phase substance was analyzed. Out of 16 normal vibrational modes, 14 were directly observed. The analysis of the spectra was assisted by quantum chemical calculations of vibrational frequencies, IR absorption intensities, and Raman scattering activities at density functional theory and ab initio levels. Previous assignments of gas-phase IR absorption bands were revisited and extended.

5.
J Phys Chem A ; 119(11): 2701-8, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25403013

ABSTRACT

Thermally induced creation of dicyanotriacetylene (NC8N) was observed in solid krypton. Samples were obtained by cryogenic trapping of gaseous cyanoacetylene/Kr mixtures subjected to electric discharges. Strong a (3)Σ(+)(u) → X (1)Σ(+)(g) phosphorescence of NC8N is reported here for the first time; its vibronic structure permitted the measurement of several ground-state vibrational frequencies. Other chemical species, mostly smaller than the precursor molecule, have also been formed, among them the dicarbon molecule (C2), and these may serve as indispensable building blocks in the NC8N synthesis. Processes leading to the elongation of cyanoacetylenic chains are of potential importance for the chemistry of icy grains present in the interstellar gas clouds.

6.
J Phys Chem A ; 119(11): 2672-82, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25535950

ABSTRACT

The recent identification of HRgC5N (Rg = Kr, Xe) in a cryogenic matrix calls for an in-depth theoretical study on these compounds. Here we present the results of CCSD(T), MP2, and DFT calculations concerning the molecular structure, stability, and vibrational spectroscopy. The procedure combining CCSD(T) calculations for variable H-Rg distances with the anharmonic description of the corresponding stretching vibration, based on a Morse-type potential energy function, was proposed and has led to good agreement between computational and experimental values for H-Rg stretching frequencies, at relatively low computational costs. High Raman scattering activity of HRgC5N and of its isomers, predicted at the DFT level, gives some prospects for the detection of these molecules with a method alternative to the IR absorption spectroscopy.

7.
Phys Chem Chem Phys ; 13(37): 16780-5, 2011 Oct 06.
Article in English | MEDLINE | ID: mdl-21858360

ABSTRACT

UV laser excitation of cryogenic solids doped with cyanoethyne, HC(3)N, led to an in situ creation of longer carbon-nitrogen chains, namely HC(5)N, C(4)N(2), and C(6)N(2), heralded by their strong visible luminescence. HC(5)N and C(4)N(2) molecules can form, most probably, within HC(3)N aggregates linked by hydrogen bonds, while the reaction occurring between two isolated, photochemically created C(3)N radicals yields C(6)N(2). This latter species, dicyanobutadiyne, is easily detected in Ar, Kr, N(2), as well as in parahydrogen solids. The C(6)N(2) phosphorescence is identified here for the first time. The reported carbon chain coupling reactions in rigid environments are of interest for astrochemistry of interstellar ices.

8.
J Chem Phys ; 133(7): 074310, 2010 Aug 21.
Article in English | MEDLINE | ID: mdl-20726645

ABSTRACT

Electronic absorption and emission spectra have been investigated for cyanodiacetylene, HC(5)N, an astrophysically relevant molecule. The analysis of gas-phase absorption was assisted with the parallel rare gas matrix isolation experiments and with density functional theory (DFT) predictions concerning the excited electronic states. Mid-UV systems B (1)Delta<--X (1)Sigma(+) (origin at 282.5 nm) and A (1)Sigma(-)<--X (1)Sigma(+) (306.8 nm) were observed. Vibronic assignments have been facilitated by the discovery of the visible phosphorescence a (3)Sigma(+)<--X (1)Sigma(+) in solid Ar, Kr, and Xe. Phosphorescence excitation spectra, as well as UV absorption measurements in rare gas matrices, revealed the enhancement of A<--X transitions. The vibronic structure of dispersed phosphorescence spectra supplied new data concerning the ground state bending fundamentals of matrix-isolated HC(5)N. The experimental singlet-triplet splitting, 2.92 eV in Ar, closely matches the value of 3.0 eV predicted by DFT.

9.
J Chem Phys ; 128(16): 164304, 2008 Apr 28.
Article in English | MEDLINE | ID: mdl-18447436

ABSTRACT

The 193 nm laser irradiation of cyanoacetylene (HCCCN) that was isolated in rare gas solids led to a long-lived luminescence (origin at 3.58 eV), which was assigned to the a (3)Sigma(+)-X (1)Sigma(+) system of cyanoacetylide (CCCN(-)). The identification, which involved (15)N and (2)H isotopic substitution studies, is based on vibronic spacings in the phosphorescence spectrum (compared to previous infrared absorption measurements and to theoretical results regarding CCCN(-) vibrational frequencies), as well as on a BD(T)/cc-pVTZ prediction for the singlet-triplet energy gap in this anion (3.61 eV). The same emission was also generated from KrHC(3)N mixtures subjected to a glow electric discharge immediately before the solidification (cold-window-radial-discharge technique).

10.
J Chem Phys ; 128(15): 154303, 2008 Apr 21.
Article in English | MEDLINE | ID: mdl-18433205

ABSTRACT

Products of the vacuum-UV photolysis of cyanodiacetylene (HC(5)N) in solid argon -- the anion C(5)N(-), imine HNC(5), and the branched carbene C(4)(H)CN -- have been identified by IR absorption spectroscopy, in addition to the already discovered isonitrile HC(4)NC. Spectral assignments were assisted by deuterium substitution experiments, by BD(T) calculations, and by the results of a recent density functional theory study.

11.
J Chem Phys ; 126(16): 164301, 2007 Apr 28.
Article in English | MEDLINE | ID: mdl-17477596

ABSTRACT

Following the measurements of UV and mid-IR spectra of cyanodiacetylene, H-(CC)2-CN, isolated in low temperature Ar matrices, the first photochemical study on this compound and on its 2H isotopomer was carried out with the laser light tuned to 267 nm and with far-UV discharge lamps. Evidence for the formation of isocyanodiacetylene, H-(CC)2-NC, was found in infrared absorption spectra interpreted with the aid of available theoretical predictions.

SELECTION OF CITATIONS
SEARCH DETAIL
...