Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 14(8): 1666-9, 2013 Jun 03.
Article in English | MEDLINE | ID: mdl-23559436

ABSTRACT

The homolytic cleavage of peroxide bonds, leading to the formation of free radicals, plays an important role in the (spontaneous) oxidation of a wide variety of hydrocarbons in the presence of oxygen. Such aerobic oxidations can be desired (e.g. for industrially applied autoxidations) or undesired (e.g. food deterioration). In this contribution we provide experimental and computational evidence for a molecule-induced homolytic dissociation mechanism between alkyl peroxide and compounds featuring weakly bonded H atoms such as (di)unsaturated hydrocarbons.


Subject(s)
Free Radicals/chemistry , Peroxides/chemistry , Algorithms , Hydrocarbons/chemistry , Kinetics , Oxidation-Reduction , Temperature
2.
Chimia (Aarau) ; 64(4): 225-30, 2010.
Article in English | MEDLINE | ID: mdl-21138187

ABSTRACT

Functionalizing organic molecules is an important value-creating step throughout the entire chemical value-chain. Oxyfunctionalization of e.g. C-H or C=C bonds is one of the most important functionalization technologies used industrially. The major challenge in this field is the prevention of side reactions and/or the consecutive over-oxidation of the desired products. Despite its importance, a fundamental understanding of the intrinsic chemistry, and the subsequent design of a tailored engineering environment, is often missing. Industrial oxidation processes are indeed to a large extent based on empirical know-how. In this mini-review, we summarize some of our previous work to help to bridge this knowledge gap and elaborate on our ongoing research.

3.
Chemistry ; 16(44): 13226-35, 2010 Nov 22.
Article in English | MEDLINE | ID: mdl-20945308

ABSTRACT

The Co(II)/Co(III)-induced decomposition of hydroperoxides is an important reaction in many industrial processes and is referred to as deperoxidation. In the first step of the so-called Haber-Weiss cycle, alkoxyl radicals and Co(III)-OH species are generated upon the reaction of the Co(II) ion with ROOH. The catalytic cycle is closed upon the regeneration of the Co(II) ion through the reaction of the Co(III)-OH species with a second ROOH molecule, thus producing one equivalent of the peroxyl radicals. Herein, the deperoxidation of tert-butylhydroperoxide by dissolved cobalt(II) acetylacetonate is studied by using UV/Vis spectroscopy in situ with a noninteracting solvent, namely, cyclohexane. Kinetic information extracted from experiments, together with quantum-chemical calculations, led to new mechanistic hypotheses. Even under anaerobic conditions, the Haber-Weiss cycle initiates a radical-chain destruction of ROOH propagated by both alkoxyl and peroxyl radicals. This chain mechanism rationalizes the high deperoxidation rates, which are directly proportional to the cobalt concentration up to approximately 75 µM at 333 K. However, at higher cobalt concentrations, a remarkable decrease of the rate is observed. The hypothesis put forward herein is that this remarkable autoinhibition effect could be explained by the hitherto overlooked chain termination of two Co(III)--OH species. The direct competition between the first-order Haber-Weiss initiation and the second-order termination can indeed explain this peculiar kinetic behavior of this homogeneous deperoxidation system.

4.
J Phys Chem A ; 112(27): 6150-8, 2008 Jul 10.
Article in English | MEDLINE | ID: mdl-18557603

ABSTRACT

Molecular interactions between cinchonidine (CD) and 2-methyl-2-hexenoic acid (MHA) have been studied by means of NMR, ATR-IR MES, DFT, and ab initio molecular dynamics. These interactions are of particular interest due to their pivotal role in the chiral induction occurring in the heterogeneous catalytic asymmetric hydrogenation of alpha,beta-unsaturated acids. The population density of the Open(3) conformer of CD, the most populated one at room temperature in apolar solvents, considerably increased to a maximum by addition of MHA to CD in toluene. The CD-MHA complex showed prominent symmetric and asymmetric carboxylate stretching vibrations in the regions of 1350-1410 and 1520-1580 cm(-1), respectively. DFT calculations revealed that these vibrational frequencies are expected to significantly shift depending on the chemical surrounding of MHA, that is, the hydrogen bond network. Earlier postulated 1:1 binding between CD and MHA was considered unlikely; instead, a dynamic equilibrium involving the MHA monomer and dimer, the 1:3 and possibly 1:2 CD-MHA complexes, were rationalized. Stable CD-MHA structures suggested by DFT calculations are the "1:3, halfN, cyclic" and the "1:3, halfN, cyclic tilted" complexes, where three MHA molecules are connected in wire by hydrogen bonding, two having direct interaction with CD. The confinement of CD's torsional motions in the complexes, leading to a slightly distorted Open(3) conformer via specific hydrogen-bonding interactions, was clearly reproduced by ab initio molecular dynamics, and the stable and flexible nature of the interaction was verified. Theoretical IR spectra of the complexes reproduced the characteristic vibrational frequencies of the complexes observed experimentally, supporting the stability of the 1:3 and implying the possibility of even higher molecular weight CD-MHA complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...