Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Top Dev Biol ; 153: 381-417, 2023.
Article in English | MEDLINE | ID: mdl-36967201

ABSTRACT

Hydra has a regenerative capacity that is not limited to individual organs but encompasses the entire body. Various global and integrative genome, transcriptome and proteome approaches have shown that many of the signaling pathways and transcription factors present in vertebrates are already present in Cnidaria, the sister group of Bilateria, and are also activated in regeneration. It is now possible to investigate one of the central questions of regeneration biology, i.e., how does the patterning system become activated by the injury signals that initiate regeneration. This review will present the current data obtained in Hydra and draw parallels with regeneration in Bilateria. Important findings of this global analysis are that the Wnt signaling pathway has a dual function in the regeneration process. In the early phase Wnt is activated generically and in a second phase of pattern formation it is activated in a position specific manner. Thus, Wnt signaling is part of the generic injury response, in which mitogen-activated protein kinases (MAPKs) are initially activated via calcium and reactive oxygen species (ROS). The MAPKs, p38, c-Jun N-terminal kinases (JNKs) and extracellular signal-regulated kinases (ERK) are essential for Wnt activation in Hydra head and foot regenerates. Furthermore, the antagonism between the ERK signaling pathway and stress-induced MAPKs results in a balanced induction of apoptosis and mitosis. However, the early Wnt genes are activated by MAPK signaling rather than apoptosis. Early Wnt gene activity is differentially integrated with a stable, ß-Catenin-based gradient along the primary body axis maintaining axial polarity and activating further Wnts in the regenerating head. Because MAPKs and Wnts are highly evolutionarily conserved, we hypothesize that this mechanism is also present in vertebrates but may be activated to different degrees at the level of early Wnt gene integration.


Subject(s)
Hydra , Wnt Signaling Pathway , Animals , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Hydra/genetics , Hydra/metabolism , Transcription Factors/metabolism , Transcriptome
2.
Proc Natl Acad Sci U S A ; 119(35): e2204122119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35994642

ABSTRACT

Hydra's almost unlimited regenerative potential is based on Wnt signaling, but so far it is unknown how the injury stimulus is transmitted to discrete patterning fates in head and foot regenerates. We previously identified mitogen-activated protein kinases (MAPKs) among the earliest injury response molecules in Hydra head regeneration. Here, we show that three MAPKs-p38, c-Jun N-terminal kinases (JNKs), and extracellular signal-regulated kinases (ERKs)-are essential to initiate regeneration in Hydra, independent of the wound position. Their activation occurs in response to any injury and requires calcium and reactive oxygen species (ROS) signaling. Phosphorylated MAPKs hereby exhibit cross talk with mutual antagonism between the ERK pathway and stress-induced MAPKs, orchestrating a balance between cell survival and apoptosis. Importantly, Wnt3 and Wnt9/10c, which are induced by MAPK signaling, can partially rescue regeneration in tissues treated with MAPK inhibitors. Also, foot regenerates can be reverted to form head tissue by a pharmacological increase of ß-catenin signaling or the application of recombinant Wnts. We propose a model in which a ß-catenin-based stable gradient of head-forming capacity along the primary body axis, by differentially integrating an indiscriminate injury response, determines the fate of the regenerating tissue. Hereby, Wnt signaling acquires sustained activation in the head regenerate, while it is transient in the presumptive foot tissue. Given the high level of evolutionary conservation of MAPKs and Wnts, we assume that this mechanism is deeply embedded in our genome.


Subject(s)
Hydra , Animals , Extracellular Signal-Regulated MAP Kinases/metabolism , Hydra/physiology , JNK Mitogen-Activated Protein Kinases/metabolism , Wnt Signaling Pathway , beta Catenin/genetics , beta Catenin/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
3.
Biomed Opt Express ; 13(1): 147-158, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35154860

ABSTRACT

Multi-view deconvolution is a powerful image-processing tool for light sheet fluorescence microscopy, providing isotropic resolution and enhancing the image content. However, performing these calculations on large datasets is computationally demanding and time-consuming even on high-end workstations. Especially in long-time measurements on developing animals, huge amounts of image data are acquired. To keep them manageable, redundancies should be removed right after image acquisition. To this end, we report a fast approximation to three-dimensional multi-view deconvolution, denoted 2D+1D multi-view deconvolution, which is able to keep up with the data flow. It first operates on the two dimensions perpendicular and subsequently on the one parallel to the rotation axis, exploiting the rotational symmetry of the point spread function along the rotation axis. We validated our algorithm and evaluated it quantitatively against two-dimensional and three-dimensional multi-view deconvolution using simulated and real image data. 2D+1D multi-view deconvolution takes similar computation time but performs markedly better than the two-dimensional approximation only. Therefore, it will be most useful for image processing in time-critical applications, where the full 3D multi-view deconvolution cannot keep up with the data flow.

4.
Sci Rep ; 6: 25709, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27166560

ABSTRACT

The stinging capsules of cnidarians, nematocysts, function as harpoon-like organelles with unusual biomechanical properties. The nanosecond discharge of the nematocyst requires a dense protein network of the capsule structure withstanding an internal pressure of up to 150 bar. Main components of the capsule are short collagens, so-called minicollagens, that form extended polymers by disulfide reshuffling of their cysteine-rich domains (CRDs). Although CRDs have identical cysteine patterns, they exhibit different structures and disulfide connectivity at minicollagen N and C-termini. We show that the structurally divergent CRDs have different cross-linking potentials in vitro and in vivo. While the C-CRD can participate in several simultaneous intermolecular disulfides and functions as a cystine knot after minicollagen synthesis, the N-CRD is monovalent. Our combined experimental and computational analyses reveal the cysteines in the C-CRD fold to exhibit a higher structural propensity for disulfide bonding and a faster kinetics of polymerization. During nematocyst maturation, the highly reactive C-CRD is instrumental in efficient cross-linking of minicollagens to form pressure resistant capsules. The higher ratio of C-CRD folding types evidenced in the medusozoan lineage might have fostered the evolution of novel, predatory nematocyst types in cnidarians with a free-swimming medusa stage.


Subject(s)
Collagen/chemistry , Cysteine/chemistry , Nematocyst/metabolism , Polymerization , Amino Acid Sequence , Animals , Antibody Specificity , Cnidaria/chemistry , Cross-Linking Reagents/chemistry , Disulfides/chemistry , Fluorescence , Green Fluorescent Proteins/metabolism , Morphogenesis , Protein Structure, Tertiary , Structure-Activity Relationship
5.
Nat Chem Biol ; 12(6): 437-43, 2016 06.
Article in English | MEDLINE | ID: mdl-27089028

ABSTRACT

Genetically encoded probes based on the H2O2-sensing proteins OxyR and Orp1 have greatly increased the ability to detect elevated H2O2 levels in stimulated or stressed cells. However, these proteins are not sensitive enough to monitor metabolic H2O2 baseline levels. Using yeast as a platform for probe development, we developed two peroxiredoxin-based H2O2 probes, roGFP2-Tsa2ΔCR and roGFP2-Tsa2ΔCPΔCR, that afford such sensitivity. These probes are ∼50% oxidized under 'normal' unstressed conditions and are equally responsive to increases and decreases in H2O2. Hence, they permit fully dynamic, real-time measurement of basal H2O2 levels, with subcellular resolution, in living cells. We demonstrate that expression of these probes does not alter endogenous H2O2 homeostasis. The roGFP2-Tsa2ΔCR probe revealed real-time interplay between basal H2O2 levels and partial oxygen pressure. Furthermore, it exposed asymmetry in H2O2 trafficking between the cytosol and mitochondrial matrix and a strong correlation between matrix H2O2 levels and cellular growth rate.


Subject(s)
Hydrogen Peroxide/analysis , Hydrogen Peroxide/metabolism , Molecular Probes/metabolism , Peroxiredoxins/metabolism , Cytosol/metabolism , Homeostasis , Mitochondria/metabolism , Oxygen/metabolism , Partial Pressure , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...