Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 40(48): 9186-9209, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33097637

ABSTRACT

Neurons within the spinal cord are sensitive to environmental relations and can bring about a behavioral modification without input from the brain. For example, rats that have undergone a thoracic (T2) transection can learn to maintain a hind leg in a flexed position to minimize exposure to a noxious electrical stimulation (shock). Inactivating neurons within the spinal cord with lidocaine, or cutting communication between the spinal cord and the periphery (sciatic transection), eliminates the capacity to learn, which implies that it depends on spinal neurons. Here we show that these manipulations have no effect on the maintenance of the learned response, which implicates a peripheral process. EMG showed that learning augments the muscular response evoked by motoneuron output and that this effect survives a sciatic transection. Quantitative fluorescent imaging revealed that training brings about an increase in the area and intensity of ACh receptor labeling at the neuromuscular junction (NMJ). It is hypothesized that efferent motoneuron output, in conjunction with electrical stimulation of the tibialis anterior muscle, strengthens the connection at the NMJ in a Hebbian manner. Supporting this, paired stimulation of the efferent nerve and tibialis anterior generated an increase in flexion duration and augmented the evoked electrical response without input from the spinal cord. Evidence is presented that glutamatergic signaling contributes to plasticity at the NMJ. Labeling for vesicular glutamate transporter is evident at the motor endplate. Intramuscular application of an NMDAR antagonist blocked the acquisition/maintenance of the learned response and the strengthening of the evoked electrical response.SIGNIFICANCE STATEMENT The neuromuscular junction (NMJ) is designed to faithfully elicit a muscular contraction in response to neural input. From this perspective, encoding environmental relations (learning) and the maintenance of a behavioral modification over time (memory) are assumed to reflect only modifications upstream from the NMJ, within the CNS. The current results challenge this view. Rats were trained to maintain a hind leg in a flexed position to avoid noxious stimulation. As expected, treatments that inhibit activity within the CNS, or disrupt peripheral communication, prevented learning. These manipulations did not affect the maintenance of the acquired response. The results imply that a peripheral modification at the NMJ contributes to the maintenance of the learned response.


Subject(s)
Behavior, Animal/physiology , Central Nervous System/physiology , Neuromuscular Junction/physiology , Animals , Conditioning, Classical , Conditioning, Operant/physiology , Efferent Pathways/physiology , Electromyography , Hindlimb/innervation , Hindlimb/physiology , Learning/physiology , Male , Motor Endplate/physiology , Motor Neurons/physiology , Rats , Rats, Sprague-Dawley , Receptors, Cholinergic/physiology , Sciatic Nerve/physiology , Spinal Cord/physiology
2.
Front Syst Neurosci ; 13: 44, 2019.
Article in English | MEDLINE | ID: mdl-31551720

ABSTRACT

Pain (nociceptive) input caudal to a spinal contusion injury can undermine long-term recovery and increase tissue loss (secondary injury). Prior work suggests that nociceptive stimulation has this effect because it fosters the breakdown of the blood-spinal cord barrier (BSCB) at the site of injury, allowing blood to infiltrate the tissue. The present study examined whether these effects impact tissue rostral and caudal to the site of injury. In addition, the study evaluated whether cutting communication with the brain, by means of a rostral transection, affects the development of hemorrhage. Eighteen hours after rats received a lower thoracic (T11-12) contusion injury, half underwent a spinal transection at T2. Noxious electrical stimulation (shock) was applied 6 h later. Cellular assays showed that, in non-transected rats, nociceptive stimulation increased hemoglobin content, activated pro-inflammatory cytokines and engaged signals related to cell death at the site of injury. These effects were not observed in transected animals. In the next experiment, the spinal transection was performed at the time of contusion injury. Nociceptive stimulation was applied 24 h later and tissue was sectioned for microscopy. In non-transected rats, nociceptive stimulation increased the area of hemorrhage and this effect was blocked by spinal transection. These findings imply that the adverse effect of noxious stimulation depends upon spared ascending fibers and the activation of rostral (brain) systems. If true, stimulation should induce less hemorrhage after a severe contusion injury that blocks transmission to the brain. To test this, rats were given a mild, moderate, or severe, injury and electrical stimulation was applied 24 h later. Histological analyses of longitudinal sections showed that nociceptive stimulation triggered less hemorrhage after a severe contusion injury. The results suggest that brain-dependent processes drive pain-induced hemorrhage after spinal cord injury (SCI).

3.
Exp Neurol ; 311: 115-124, 2019 01.
Article in English | MEDLINE | ID: mdl-30268767

ABSTRACT

In humans, spinal cord injury (SCI) is often accompanied by additional tissue damage (polytrauma) that can engage pain (nociceptive) fibers. Prior work has shown that this nociceptive input can expand the area of tissue damage (secondary injury), undermine behavioral recovery, and enhance the development of chronic pain. Here, it is shown that nociceptive input given a day after a lower thoracic contusion injury in rats enhances the infiltration of red blood cells at the site of injury, producing an area of hemorrhage that expands secondary injury. Peripheral nociceptive fibers were engaged 24 h after injury by means of electrical stimulation (shock) applied at an intensity that engages unmyelinated pain (C) fibers or through the application of the irritant capsaicin. Convergent western immunoblot and cyanmethemoglobin colorimetric assays showed that both forms of stimulation increased the concentration of hemoglobin at the site of injury, with a robust effect observed 3-24 h after stimulation. Histopathology confirmed that shock treatment increased the area of hemorrhage and the infiltration of red blood cells. SCI can lead to hemorrhage by engaging the sulfonylurea receptor 1 (SUR1) transient receptor potential melastatin 4 (TRPM4) channel complex in neurovascular endothelial cells, which leads to cell death and capillary fragmentation. Histopathology confirmed that areas of hemorrhage showed capillary fragmentation. Co-immunoprecipitation of the SUR1-TRPM4 complex showed that it was up-regulated by noxious stimulation. Shock-induced hemorrhage was associated with an acute disruption in locomotor performance. These results imply that noxious stimulation impairs long-term recovery because it amplifies the breakdown of the blood spinal cord barrier (BSCB) and the infiltration of red blood cells, which expands the area of secondary injury.


Subject(s)
Hematoma, Epidural, Spinal/pathology , Nerve Fibers, Unmyelinated/pathology , Pain Measurement/methods , Pain/pathology , Spinal Cord Injuries/pathology , Animals , Hematoma, Epidural, Spinal/metabolism , Male , Nerve Fibers, Unmyelinated/metabolism , Pain/metabolism , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/metabolism , Thoracic Vertebrae
4.
Front Syst Neurosci ; 12: 27, 2018.
Article in English | MEDLINE | ID: mdl-29977195

ABSTRACT

Pain (nociceptive) input caudal to a spinal contusion injury increases tissue loss and impairs long-term recovery. It was hypothesized that noxious stimulation has this effect because it engages unmyelinated pain (C) fibers that produce a state of over-excitation in central pathways. The present article explored this issue by assessing the effect of capsaicin, which activates C-fibers that express the transient receptor potential vanilloid receptor-1 (TRPV1). Rats received a lower thoracic (T11) contusion injury and capsaicin was applied to one hind paw the next day. For comparison, other animals received noxious electrical stimulation at an intensity that engages C fibers. Both forms of stimulation elicited similar levels of c-fos mRNA expression, a cellular marker of nociceptive activation, and impaired long-term behavioral recovery. Cellular assays were then performed to compare the acute effect of shock and capsaicin treatment. Both forms of noxious stimulation increased expression of tumor necrosis factor (TNF) and caspase-3, which promotes apoptotic cell death. Shock, but not capsaicin, enhanced expression of signals related to pyroptotic cell death [caspase-1, inteleukin-1 beta (IL-1ß)]. Pyroptosis has been linked to the activation of the P2X7 receptor and the outward flow of adenosine triphosphate (ATP) through the pannexin-1 channel. Blocking the P2X7 receptor with Brilliant Blue G (BBG) reduced the expression of signals related to pyroptotic cell death in contused rats that had received shock. Blocking the pannexin-1 channel with probenecid paradoxically had the opposite effect. BBG enhanced long-term recovery and lowered reactivity to mechanical stimulation applied to the girdle region (an index of chronic pain), but did not block the adverse effect of nociceptive stimulation. The results suggest that C-fiber input after injury impairs long-term recovery and that this effect may arise because it induces apoptotic cell death.

5.
Physiol Behav ; 174: 1-9, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28238778

ABSTRACT

Prior work has shown that neurons within the spinal cord are sensitive to temporal relations and that stimulus regularity impacts nociceptive processing and adaptive plasticity. Application of brief (80ms) shocks (180-900) in a variable manner induces a form of maladaptive plasticity that inhibits spinally-mediated learning and enhances nociceptive reactivity. In contrast, an extended exposure (720-900) to stimuli given at regular (fixed spaced) intervals has a restorative effect that counters nociceptive sensitization and enables learning. The present paper explores the stimulus parameters under which this therapeutic effect of fixed spaced stimulation emerges. Spinally transected rats received variably spaced stimulation (180 shocks) to the sciatic nerve at an intensity (40-V) that recruits pain (C) fibers, producing a form of maladaptive plasticity that impairs spinal learning. As previously shown, exposure to 720 fixed spaced shocks had a therapeutic effect that restored adaptive learning. This therapeutic effect was most robust at a lower shock intensity (20V) and was equally strong irrespective of pulse duration (20-80ms). A restorative effect was observed when stimuli were given at a frequency between 0.5 and 5Hz, but not at a higher (50Hz) or lower (0.05Hz) rate. The results are consistent with prior work implicating neural systems related to the central pattern generator that drives stepping behavior. Clinical implications are discussed.


Subject(s)
Adaptation, Physiological/physiology , Electric Stimulation/methods , Neuronal Plasticity/physiology , Recovery of Function/physiology , Sciatic Nerve/physiology , Spinal Cord Injuries/therapy , Analysis of Variance , Animals , Biophysics , Conditioning, Operant/physiology , Disease Models, Animal , Male , Rats , Rats, Sprague-Dawley
6.
J Neurotrauma ; 34(6): 1200-1208, 2017 03 15.
Article in English | MEDLINE | ID: mdl-27912032

ABSTRACT

More than 90% of spinal cord injuries are caused by traumatic accidents and are often associated with other tissue damage (polytrauma) that can provide a source of continued pain input during recovery. In a clinically relevant spinal cord contusion injury model, prior work has shown that noxious stimulation at an intensity that engages pain (C) fibers soon after injury augments secondary injury and impairs functional recovery. Noxious input increases the expression of pro-inflammatory cytokines (interleukin 1ß and 18), cellular signals associated with cell death (caspase 3 and 8), and physiological signs of hemorrhage. Here, it is shown that reducing neural excitability after spinal cord injury (SCI) with the local anesthetic lidocaine (micro-injected by means of a lumbar puncture) blocks these adverse cellular effects. In contrast, treatment with an analgesic dose of morphine had no effect. Contused rats that received nociceptive stimulation soon after injury exhibited poor locomotor recovery, less weight gain, and greater tissue loss at the site of injury. Prophylactic application of lidocaine blocked the adverse effect of nociceptive stimulation on behavioral recovery and reduced tissue loss from secondary injury. The results suggest that quieting neural excitability using lidocaine can reduce the adverse effect of pain input (from polytrauma or surgery) after SCI.


Subject(s)
Anesthetics, Local/pharmacology , Lidocaine/pharmacology , Pain/drug therapy , Recovery of Function/drug effects , Spinal Cord Injuries/drug therapy , Anesthetics, Local/administration & dosage , Animals , Disease Models, Animal , Lidocaine/administration & dosage , Male , Pain/etiology , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/complications
7.
J Neurotrauma ; 34(10): 1873-1890, 2017 05 15.
Article in English | MEDLINE | ID: mdl-27788626

ABSTRACT

Spinal cord injury (SCI) is often accompanied by other tissue damage (polytrauma) that provides a source of pain (nociceptive) input. Recent findings are reviewed that show SCI places the caudal tissue in a vulnerable state that exaggerates the effects nociceptive stimuli and promotes the development of nociceptive sensitization. Stimulation that is both unpredictable and uncontrollable induces a form of maladaptive plasticity that enhances nociceptive sensitization and impairs spinally mediated learning. In contrast, relational learning induces a form of adaptive plasticity that counters these adverse effects. SCI sets the stage for nociceptive sensitization by disrupting serotonergic (5HT) fibers that quell overexcitation. The loss of 5HT can enhance neural excitability by reducing membrane-bound K+-Cl- cotransporter 2, a cotransporter that regulates the outward flow of Cl-. This increases the intracellular concentration of Cl-, which reduces the hyperpolarizing (inhibitory) effect of gamma-aminobutyric acid. Uncontrollable noxious stimulation also undermines the recovery of locomotor function, and increases behavioral signs of chronic pain, after a contusion injury. Nociceptive stimulation has a greater effect if experienced soon after SCI. This adverse effect has been linked to a downregulation in brain-derived neurotrophic factor and an upregulation in the cytokine, tumor necrosis factor. Noxious input enhances tissue loss at the site of injury by increasing the extent of hemorrhage and apoptotic/pyroptotic cell death. Intrathecal lidocaine blocks nociception-induced hemorrhage, cellular indices of cell death, and its adverse effect on behavioral recovery. Clinical implications are discussed.


Subject(s)
Neuronal Plasticity/physiology , Pain Measurement/methods , Pain/pathology , Recovery of Function/physiology , Spinal Cord Injuries/pathology , Animals , Humans , Pain/etiology , Pain/physiopathology , Spinal Cord Injuries/complications , Spinal Cord Injuries/physiopathology
8.
Front Behav Neurosci ; 9: 274, 2015.
Article in English | MEDLINE | ID: mdl-26539090

ABSTRACT

Prior studies have shown that intermittent noxious stimulation has divergent effects on spinal cord plasticity depending upon whether it occurs in a regular (fixed time, FT) or irregular (variable time, VT) manner: In spinally transected animals, VT stimulation to the tail or hind leg impaired spinal learning whereas an extended exposure to FT stimulation had a restorative/protective effect. These observations imply that lower level systems are sensitive to temporal relations. Using spinally transected rats, it is shown that the restorative effect of FT stimulation emerges after 540 shocks; fewer shocks generate a learning impairment. The transformative effect of FT stimulation is related to the number of shocks administered, not the duration of exposure. Administration of 360 FT shocks induces a learning deficit that lasts 24 h. If a second bout of FT stimulation is given a day after the first, it restores the capacity to learn. This savings effect implies that the initial training episode had a lasting (memory-like) effect. Two bouts of shock have a transformative effect when applied at different locations or at difference frequencies, implying spinal systems abstract and store an index of regularity (rather than a specific interval). Implications of the results for step training and rehabilitation after injury are discussed.

9.
Front Neural Circuits ; 8: 100, 2014.
Article in English | MEDLINE | ID: mdl-25249941

ABSTRACT

Research has shown that spinal circuits have the capacity to adapt in response to training, nociceptive stimulation and peripheral inflammation. These changes in neural function are mediated by physiological and neurochemical systems analogous to those that support plasticity within the hippocampus (e.g., long-term potentiation and the NMDA receptor). As observed in the hippocampus, engaging spinal circuits can have a lasting impact on plastic potential, enabling or inhibiting the capacity to learn. These effects are related to the concept of metaplasticity. Behavioral paradigms are described that induce metaplastic effects within the spinal cord. Uncontrollable/unpredictable stimulation, and peripheral inflammation, induce a form of maladaptive plasticity that inhibits spinal learning. Conversely, exposure to controllable or predictable stimulation engages a form of adaptive plasticity that counters these maladaptive effects and enables learning. Adaptive plasticity is tied to an up-regulation of brain derived neurotrophic factor (BDNF). Maladaptive plasticity is linked to processes that involve kappa opioids, the metabotropic glutamate (mGlu) receptor, glia, and the cytokine tumor necrosis factor (TNF). Uncontrollable nociceptive stimulation also impairs recovery after a spinal contusion injury and fosters the development of pain (allodynia). These adverse effects are related to an up-regulation of TNF and a down-regulation of BDNF and its receptor (TrkB). In the absence of injury, brain systems quell the sensitization of spinal circuits through descending serotonergic fibers and the serotonin 1A (5HT 1A) receptor. This protective effect is blocked by surgical anesthesia. Disconnected from the brain, intracellular Cl(-) concentrations increase (due to a down-regulation of the cotransporter KCC2), which causes GABA to have an excitatory effect. It is suggested that BDNF has a restorative effect because it up-regulates KCC2 and re-establishes GABA-mediated inhibition.


Subject(s)
Inflammation/physiopathology , Learning/physiology , Neuronal Plasticity/physiology , Recovery of Function/physiology , Spinal Cord Injuries/pathology , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Humans , Learning Disabilities/physiopathology , Receptors, Glutamate/metabolism , Spinal Cord Injuries/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...