Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Genet ; 101(6): 995-1005, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29198722

ABSTRACT

A recurrent de novo missense variant within the C-terminal Sin3-like domain of ZSWIM6 was previously reported to cause acromelic frontonasal dysostosis (AFND), an autosomal-dominant severe frontonasal and limb malformation syndrome, associated with neurocognitive and motor delay, via a proposed gain-of-function effect. We present detailed phenotypic information on seven unrelated individuals with a recurrent de novo nonsense variant (c.2737C>T [p.Arg913Ter]) in the penultimate exon of ZSWIM6 who have severe-profound intellectual disability and additional central and peripheral nervous system symptoms but an absence of frontonasal or limb malformations. We show that the c.2737C>T variant does not trigger nonsense-mediated decay of the ZSWIM6 mRNA in affected individual-derived cells. This finding supports the existence of a truncated ZSWIM6 protein lacking the Sin3-like domain, which could have a dominant-negative effect. This study builds support for a key role for ZSWIM6 in neuronal development and function, in addition to its putative roles in limb and craniofacial development, and provides a striking example of different variants in the same gene leading to distinct phenotypes.


Subject(s)
DNA-Binding Proteins/genetics , Intellectual Disability/genetics , Neurocognitive Disorders/genetics , Central Nervous System/abnormalities , Central Nervous System/embryology , Codon, Nonsense/genetics , High-Throughput Nucleotide Sequencing , Humans , Limb Deformities, Congenital/genetics , Mandibulofacial Dysostosis/genetics , Peripheral Nervous System/abnormalities , Peripheral Nervous System/enzymology
2.
Genome Med ; 9(1): 73, 2017 08 14.
Article in English | MEDLINE | ID: mdl-28807008

ABSTRACT

BACKGROUND: De novo missense variants in CDK13 have been described as the cause of syndromic congenital heart defects in seven individuals ascertained from a large congenital cardiovascular malformations cohort. We aimed to further define the phenotypic and molecular spectrum of this newly described disorder. METHODS: To minimise ascertainment bias, we recruited nine additional individuals with CDK13 pathogenic variants from clinical and research exome laboratory sequencing cohorts. Each individual underwent dysmorphology exam and comprehensive medical history review. RESULTS: We demonstrate greater than expected phenotypic heterogeneity, including 33% (3/9) of individuals without structural heart disease on echocardiogram. There was a high penetrance for a unique constellation of facial dysmorphism and global developmental delay, as well as less frequently seen renal and sacral anomalies. Two individuals had novel CDK13 variants (p.Asn842Asp, p.Lys734Glu), while the remaining seven unrelated individuals had a recurrent, previously published p.Asn842Ser variant. Summary of all variants published to date demonstrates apparent restriction of pathogenic variants to the protein kinase domain with clustering in the ATP and magnesium binding sites. CONCLUSIONS: Here we provide detailed phenotypic and molecular characterisation of individuals with pathogenic variants in CDK13 and propose management guidelines based upon the estimated prevalence of anomalies identified.


Subject(s)
CDC2 Protein Kinase/genetics , Face/abnormalities , Heart Defects, Congenital/metabolism , Intellectual Disability/metabolism , Mutation , Phenotype , Adolescent , Adult , Child , Child, Preschool , Female , Heart Defects, Congenital/genetics , Humans , Infant , Intellectual Disability/genetics , Male , Syndrome
3.
Am J Med Genet A ; 170(9): 2237-47, 2016 09.
Article in English | MEDLINE | ID: mdl-27264673

ABSTRACT

Noonan syndrome is a rasopathy caused by mutations in multiple genes encoding components of the RAS/MAPK pathway. Despite its variable phenotype, limited genotype-phenotype correlations exist. Noonan syndrome with loose anagen hair (NS-LAH) is characterized by its distinctive hair anomalies, developmental differences, and structural brain abnormalities and is caused by a single recurrent missense SHOC2 mutation. SHOC2 forms a complex with protein phosphatase 1 (PP1C). Protein phosphatases counterbalance kinases and control activation of signaling proteins, such as the mitogen-activated protein kinases of the RAS/MAPK pathway. Here we report four patients with de novo missense mutations in protein phosphatase one catalytic subunit beta (PPP1CB), sharing a recognizable phenotype. Three individuals had the recurrent PPP1CB c.146G>C, p.Pro49Arg mutation, the fourth had a c.166G>C, p.Ala56Pro change. All had relative or absolute macrocephaly, low-set and posteriorly angulated ears, and developmental delay. Slow growing and/or sparse hair and/or an unruly hair texture was present in all. Three individuals had feeding difficulties requiring feeding tubes. One of two males had cryptorchidism, another had pectus excavatum. Short stature was present in three. A female with the recurrent mutation had a Dandy-Walker malformation and optic nerve hypoplasia. Mild ventriculomegaly occurred in all, cerebellar tonsillar ectopia was seen in two and progressed to Chiari 1 malformation in one individual. Based on the combination of phenotypic findings and PPP1CB's effect on RAF dephosphorylation within the RAS/MAPK pathway, this novel condition can be considered a rasopathy, most similar to NS-LAH. Collectively, these mutations meet the standardized criteria for pathogenicity. © 2016 Wiley Periodicals, Inc.


Subject(s)
Loose Anagen Hair Syndrome/diagnosis , Loose Anagen Hair Syndrome/genetics , Mutation, Missense , Noonan Syndrome/diagnosis , Noonan Syndrome/genetics , Protein Phosphatase 1/genetics , Brain/pathology , Child , Child, Preschool , Dandy-Walker Syndrome/diagnosis , Dandy-Walker Syndrome/genetics , Diagnostic Imaging , Exome , Facies , Female , Genetic Association Studies , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Loose Anagen Hair Syndrome/metabolism , Male , Noonan Syndrome/metabolism , Phenotype , Young Adult , ras Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...