Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 62(9): 4606-4623, 2019 05 09.
Article in English | MEDLINE | ID: mdl-30943029

ABSTRACT

Cyclin-dependent kinases are therapeutic targets frequently deregulated in various cancers. By convenient alkylation of the 5-sulfanyl group, we synthesized 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-1(2) H-pyrazolo[4,3- d]pyrimidines with various substitutions at position 5 with potent antiproliferative activity in non-Hodgkin lymphoma cell lines. The most potent derivative 4.35 also displayed activities across more than 60 cancer cell lines. The kinase profiling confirmed high selectivity of 4.35 toward cyclin-dependent kinases (CDKs) 2, 5, and 9, and the cocrystal with CDK2/cyclin A2 revealed its binding in the active site. Cultured lymphoma cell lines treated with 4.35 showed dephosphorylation of CDK substrates, cleavage of PARP-1, downregulation of XIAP and MCL-1, and activation of caspases, which collectively confirmed ongoing apoptosis. Moreover, 4.35 demonstrated significant activity in various cell line xenograft and patient-derived xenograft mouse models in vivo both as a monotherapy and as a combination therapy with the BCL2-targeting venetoclax. These findings support further studies of combinatorial treatment based on CDK inhibitors.


Subject(s)
Antineoplastic Agents/therapeutic use , Cyclin-Dependent Kinases/antagonists & inhibitors , Lymphoma/drug therapy , Protein Kinase Inhibitors/therapeutic use , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Female , Humans , Mice , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Structure-Activity Relationship , Sulfonamides/pharmacology , Xenograft Model Antitumor Assays
2.
Clin Cancer Res ; 25(14): 4455-4465, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31004002

ABSTRACT

PURPOSE: Mantle cell lymphoma (MCL) is an aggressive subtype of B-cell non-Hodgkin lymphomas characterized by (over)expression of BCL2. A BCL2-targeting drug, venetoclax, has promising anticancer activity in MCL. We analyzed molecular mechanisms of venetoclax resistance in MCL cells and tested strategies to overcome it. EXPERIMENTAL DESIGN: We confirmed key roles of proapoptotic proteins BIM and NOXA in mediating venetoclax-induced cell death in MCL. Both BIM and NOXA are, however, differentially expressed in cell lines compared with primary cells. First, NOXA protein is significantly overexpressed in most MCL cell lines. Second, deletions of BIM gene harbored by three commonly used MCL cell lines (JEKO-1, MINO, and Z138) were not found by array comparative genomic hybridization using a validation set of 24 primary MCL samples. RESULTS: We demonstrated that MCL1 and NOXA play important roles in mediating resistance to venetoclax. Consequently, we tested an experimental treatment strategy based on cotargeting BCL2 with venetoclax and MCL1 with a highly specific small-molecule MCL1 inhibitor S63845. The combination of venetoclax and S63845 demonstrated synthetic lethality in vivo on a panel of five patient-derived xenografts established from patients with relapsed MCL with adverse cytogenetics. CONCLUSIONS: Our data strongly support investigation of venetoclax in combination with S63845 as an innovative treatment strategy for chemoresistant MCL patients with adverse cytogenetics in the clinical grounds.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Drug Synergism , Lymphoma, Mantle-Cell/drug therapy , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Neoplasm Recurrence, Local/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Pyrimidines/pharmacology , Sulfonamides/pharmacology , Thiophenes/pharmacology , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm , Female , Humans , Lymphoma, Mantle-Cell/metabolism , Lymphoma, Mantle-Cell/pathology , Mice , Mice, Inbred NOD , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , Xenograft Model Antitumor Assays
3.
J Control Release ; 289: 44-55, 2018 11 10.
Article in English | MEDLINE | ID: mdl-30248447

ABSTRACT

In this study, we report the in vivo anti-lymphoma efficacy and diagnostic potential of newly designed near-infrared fluorescent dye containing polymer-doxorubicin conjugates using murine models of malignant lymphomas including one cell line-derived xenograft (RAJI) and two patient-derived lymphoma xenografts (VFN-D1 and VFN-M2). Two types of passively targeted conjugates differing in architecture of the polymer backbone were synthesized. One of the conjugates was designed using a single linear polymer chain, and the second was more sophisticated with a star-shaped high-molecular-weight (HMW) polymer employing a dendrimer core. The linear HPMA copolymers were linked to the dendrimer core via a one-point attachment, thus forming a hydrophilic polymer shell. Both polymer-doxorubicin conjugates were long-circulating with reduced side effects. Both polymer prodrugs were designed as stimuli-sensitive systems in which the anti-cancer drug doxorubicin was attached to the hydrophilic copolymers via a pH-labile hydrazone linkage. Such polymer prodrugs were fairly stable in aqueous solutions at pH 7.4, and the drug was readily released in mildly acid environments at pH 5-6.5 by hydrolysis of the hydrazone bonds. In addition, polymers were labelled with near-infrared fluorescent dye enabling long term in vivo visualization. Malignant lymphomas represent the most common type of haematological malignancies. Therapy for the majority of malignant lymphomas consists of multi-agent chemotherapy based on an anthracycline doxorubicin, the most prominent side effect of which is cardiotoxicity. We have demonstrated significant anti-lymphoma efficacy of the polymer-doxorubicin conjugates when compared to equally toxic doses of conventional (unbound) doxorubicin in all tested models. Favourable pharmacokinetics for carried drug and labelled polymer carrier was observed, showing predominant uptake of the drug and polymer itself in the tumour mass. In addition, we have observed a promising diagnostic potential of fluorescently labelled polymer prodrugs. Dynamically analyzed fluorescence intensity over subcutaneously xenografted lymphomas closely corresponded to changes in the lymphoma tumour volumes, thereby enabling a non-invasive assessment of treatment efficacy.


Subject(s)
Antineoplastic Agents/chemistry , Doxorubicin/chemistry , Fluorescent Dyes/chemistry , Lymphoma/diagnostic imaging , Lymphoma/drug therapy , Nanocapsules/chemistry , Acrylamides/chemistry , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Dendrimers/chemistry , Doxorubicin/therapeutic use , Drug Liberation , Female , Heterografts , Humans , Hydrazones/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Lymphoma/pathology , Methacrylates/chemistry , Mice , Polymerization , Polymers/chemistry
4.
Blood ; 130(3): 310-322, 2017 07 20.
Article in English | MEDLINE | ID: mdl-28202458

ABSTRACT

Activated B-cell-like (ABC) and germinal center B-cell-like diffuse large B-cell lymphoma (DLBCL) represent the 2 major molecular DLBCL subtypes. They are characterized by differences in clinical course and by divergent addiction to oncogenic pathways. To determine activity of novel compounds in these 2 subtypes, we conducted an unbiased pharmacologic in vitro screen. The phosphatidylinositol-3-kinase (PI3K) α/δ (PI3Kα/δ) inhibitor AZD8835 showed marked potency in ABC DLBCL models, whereas the protein kinase B (AKT) inhibitor AZD5363 induced apoptosis in PTEN-deficient DLBCLs irrespective of their molecular subtype. These in vitro results were confirmed in various cell line xenograft and patient-derived xenograft mouse models in vivo. Treatment with AZD8835 induced inhibition of nuclear factor κB signaling, prompting us to combine AZD8835 with the Bruton's tyrosine kinase inhibitor ibrutinib. This combination was synergistic and effective both in vitro and in vivo. In contrast, the AKT inhibitor AZD5363 was effective in PTEN-deficient DLBCLs through downregulation of the oncogenic transcription factor MYC. Collectively, our data suggest that patients should be stratified according to their oncogenic dependencies when treated with PI3K and AKT inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic , Lymphoma, Large B-Cell, Diffuse/drug therapy , Oxadiazoles/pharmacology , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase , Animals , Apoptosis/drug effects , Drug Combinations , Drug Screening Assays, Antitumor , Drug Synergism , Humans , Lymphoma, Large B-Cell, Diffuse/classification , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , NF-kappa B/metabolism , Organ Specificity , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...