Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chaos ; 29(6): 061101, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31266342

ABSTRACT

Chaotic systems have been extensively applied in image encryption as a source of randomness. However, dynamical degradation has been pointed out as an important limitation of this procedure. To overcome this limitation, this paper presents a novel image encryption scheme based on the pseudo-orbits of 1D chaotic maps. We use the difference of two pseudo-orbits to generate a random sequence. The generated sequence has been successful in all NIST tests, which implies it has adequate randomness to be employed in encryption process. Confusion and diffusion requirements are also effectively implemented. The usual low key space of 1D maps has been improved by a novelty procedure based on multiple perturbations in the transient time. A factor using the plain image is one of the perturbation conditions, which ensures a new and distinct secret key for each image to be encrypted. The proposed encryption scheme has been efficaciously verified using the Lena, Baboon, and Barbara test images.

2.
Entropy (Basel) ; 21(4)2019 Apr 03.
Article in English | MEDLINE | ID: mdl-33267076

ABSTRACT

In this paper, we consider nonlinear integration techniques, based on direct Padé approximation of the differential equation solution, and their application to conservative chaotic initial value problems. The properties of discrete maps obtained by nonlinear integration are studied, including phase space volume dynamics, bifurcation diagrams, spectral entropy, and the Lyapunov spectrum. We also plot 2D dynamical maps to enlighten the features introduced by nonlinear integration techniques. The comparative study of classical integration methods and Padé approximation methods is given. It is shown that nonlinear integration techniques significantly change the behavior of discrete models of nonlinear systems, increasing the values of Lyapunov exponents and spectral entropy. This property reduces the applicability of numerical methods based on Padé approximation to the chaotic system simulation but it is still useful for construction of pseudo-random number generators that are resistive to chaos degradation or discrete maps with highly nonlinear properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...