Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 947: 174279, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942303

ABSTRACT

Standardisation and validation of methods for microplastics research is essential. A major methodological challenge is the removal of planktonic organisms from marine water samples allowing for the identification of microplastics associated to planktonic communities. To improve the reproducibility and accuracy of digestion methods for the removal of planktonic biomass, we compared and modified existing chemical digestion methods. These digestion methods included an acidic digestion using nitric acid, alkaline digestions with potassium hydroxide (alkaline 1 digestion) and sodium hydroxide from drain cleaner (alkaline 2 digestion), an oxidative digestion using sodium dodecyl sulfate with hydrogen peroxide, and an enzymatic digestion using enzyme drain clean pellets. Chemical digestion of three densities of zooplankton communities (high, medium, and low) in the presence of five commonly found environmental microplastic pollutants (polyamide, polyethylene, polyethylene terephthalate, polypropylene, and polystyrene) were performed for each treatment. The chemical treatments were assessed for (i) their digestion efficiency of zooplankton communities by different biomass densities, and (ii) their impact on microplastic particles through the comparison of both chemical (Raman spectroscopy) and physical (length, width, and visual) changes, between the pre-treatment and post-treatment microplastic particles. The alkaline 1, alkaline 2 and oxidative methods demonstrated significantly better digestion efficiency (p < 0.05) than the modified enzymatic and acidic treatments. The acidic, alkaline 1, and alkaline 2, treatments caused the most damages to the microplastic particles. We suggest future studies to implement the oxidative digestion method with sodium dodecyl sulfate and hydrogen peroxide because of its high digestion efficiency, and low damage to microplastic particles. This method is similar to the wet peroxide oxidation digestion method used throughout the literature but can be implemented at a lower cost.

2.
Environ Pollut ; 321: 121156, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36709917

ABSTRACT

Contamination from plastic debris is omnipresent in marine environments, posing a substantial risk to marine organisms, food webs and the ecosystem. The overlap between the size range of marine plastic pollution with prey means that plastics are readily available for consumption by organisms at all trophic levels. Large plastic debris can directly result in the death of larger marine organisms, through entanglement, strangulation, choking and starvation through a false sense of satiation. Whereas smaller plastic debris, such as micro- and nano-plastics can have adverse impact to marine organisms due to their large surface area to volume ratio and their ability to translocate within an organism. Various physiological processes are reported to be impacted by these small contaminants, such as feeding behaviour, reproductive outputs, developmental anomalies, changes in gene expression, tissue inflammation and the inhibition of growth and development to both adults and their offspring. Micro- and nano-plastics are still relatively poorly understood and are considered a hidden threat. Plastic is a complex contaminant due to the diversity in sizes, shapes, polymer compositions, and chemical additives. These factors can each have unique and species-specific impacts. Consumption of plastics can occur directly, through ingestion and indirectly, through trophic transfer, entanglement of prey, adherence of plastics to external surfaces, and adherence of organisms to the external surfaces of plastics. This review investigated the intrusion of plastics into the marine food web and the subsequent consequences of plastic pollution to marine biota.The objective of this review was to identify the complexity of impacts to marine organisms through the food web from plastic contamination. Through a concise analysis of the available literature the review has shown that plastic pollution and their associated additives can adversely impact environmental and biological health.


Subject(s)
Food Chain , Water Pollutants, Chemical , Ecosystem , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Microplastics , Environmental Monitoring , Aquatic Organisms , Waste Products/analysis
3.
Sci Total Environ ; 856(Pt 1): 158672, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36419277

ABSTRACT

The pollution of marine environments from plastic waste is anticipated to increase with current increases in plastic production. Reciprocally, escalating research efforts provide an improved understanding, monitoring, awareness, and mitigation of plastic contamination. Freshwater streams are recognised as one of the main contributors of microplastic pollution in marine environments. Presented here is the first investigation on the abundance of microplastic contamination (>20 µm and <5 mm) in freshwater streams in Adelaide, Australia. Composite samples were obtained from the sub-surface waters of eight freshwater streams (Magazine Wetland, Torrens River, Brownhill Creek, Sturt River, Field River, Christie Creek, Onkaparinga River and Pedler Creek), just before their connection to the Gulf St Vincent. Microplastics were found in all samples and microplastic abundance was 6.4 ± 5.5 particles.L-1 across all streams, with significant variations. Microplastic abundances found in the freshwater streams of Adelaide were comparatively higher than those found in areas of similar urbanisation, likely due to the varying methodologies used across studies. This work provides evidence, for the first time, of the prevalence of microplastic contamination in the sub-surface waters of eight freshwater streams in metropolitan Adelaide. These findings reinforce the need for long-term and on-going monitoring of freshwater streams for plastic contamination. Furthermore, spatial and temporal monitoring will allow for the identification in changes to the abundances of microplastics discharging from these sources into the Gulf St Vincent and observe if abundances increase or decrease with any future targeted waste management efforts.


Subject(s)
Plastics , Water Pollutants, Chemical , Microplastics , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Fresh Water , Australia
SELECTION OF CITATIONS
SEARCH DETAIL
...