Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 282(22): 16654-66, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17405873

ABSTRACT

MARCO is a trimeric class A scavenger receptor of macrophages and dendritic cells that recognizes polyanionic particles and pathogens. The distal, scavenger receptor cysteine-rich (SRCR) domain of the extracellular part of this receptor has been implicated in ligand binding. To provide a structural basis for understanding the ligand-binding mechanisms of MARCO, we have determined the crystal structure of the mouse MARCO SRCR domain. The recombinant SRCR domain purified as monomeric and dimeric forms, and their structures were determined at 1.78 and 1.77 A resolution, respectively. The monomer has a compact globular fold with a twisted five-stranded antiparallel beta-sheet and a long loop covering a single alpha-helix, whereas the dimer is formed via beta-strand swapping of two monomers, thus containing a large eight-stranded beta-sheet. Calculation of the surface electrostatic potential revealed that the beta-sheet region with several arginines forms a basic cluster. Unexpectedly, an acidic cluster was found in the long loop region. In the monomer, the acidic cluster is involved in metal ion binding. Studies with cells expressing various SRCR domain mutants showed that all of the arginines of the basic cluster are involved in ligand binding, suggesting a cooperative binding mechanism. Ligand binding is also dependent on the acidic cluster and Ca2+ ions whose depletion appears to affect ligand binding at least by modulating the electrostatic potential or relative domain orientation. We propose that the SRCR domain dimerization can contribute to the recognition of large ligands by providing a means for the MARCO receptor oligomerization.


Subject(s)
Calcium/chemistry , Receptors, Immunologic/chemistry , Animals , Calcium/metabolism , Crystallography, X-Ray , Dendritic Cells/metabolism , Dimerization , Humans , Ligands , Macrophages/metabolism , Mice , Protein Binding/genetics , Protein Structure, Secondary , Protein Structure, Tertiary/genetics , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Static Electricity , Structure-Activity Relationship
2.
J Biol Chem ; 281(18): 12767-75, 2006 May 05.
Article in English | MEDLINE | ID: mdl-16524885

ABSTRACT

MARCO is a class A scavenger receptor capable of binding both gram-negative and -positive bacteria. Using the surface plasmon resonance technique, we show here that a recombinant, soluble form of MARCO, sMARCO, binds the major gram-negative and -positive bacterial surface components, lipopolysaccharide and lipoteichoic acid. Yet, the interaction of these two polyanions with sMARCO is of much lower affinity than that of polyinosinic acid, a polyanionic inhibitor of bacterial binding to MARCO. To further elucidate the ligand-binding functions of MARCO, we performed a phage display screen with sMARCO. The screening resulted in the enrichment of only a handful of phage clones. Contrary to expectations, no polyanionic peptides, but only those with a predominantly hydrophobic nature, were enriched. One peptide, VRWGSFAAWL, was displayed on two-thirds of the phages recovered after four rounds of screening. The VRWGSFAAWL phage-sMARCO interaction had significantly slower dissociation kinetics than that between sMARCO and lipopolysaccharide or lipoteichoic acid. Further work with this phage, and the second most enriched phage, displaying the peptide RLNWAWWLSY, demonstrated that both peptides bind to the SRCR domain of MARCO, and that they probably bind to the same site. Data base searches suggested that the VRWGSFAAWL peptide represents complement component C4, but we could not convincingly confirm this suggestion. A study with chimeric scavenger receptors indicated that even minor sequence changes in the MARCO scavenger receptor cysteine-rich (SRCR) domain can have profound effects on the binding of the prototypic scavenger receptor ligand, acetylated low density lipoprotein. As shown by differential binding of glutathione S-transferase-VR-WGSFAAWL, these differences were very likely due to conformational changes. These findings led to experiments that demonstrated a crucial role of the SRCR domain for acetylated low density lipoprotein binding in MARCO. Thus, our results strengthen the notion that the SRCR domain is the major ligand-binding domain in MARCO. Furthermore, they suggest that the domain may contain multiple ligand-binding sites.


Subject(s)
Lipoproteins, LDL/chemistry , Receptors, Immunologic/physiology , Receptors, Scavenger/chemistry , Acetylation , Animals , Binding Sites , CHO Cells , Cricetinae , Ligands , Mice , Peptide Library , Protein Binding , Protein Structure, Tertiary , Rats , Receptors, Immunologic/metabolism
3.
Proc Natl Acad Sci U S A ; 99(11): 7414-9, 2002 May 28.
Article in English | MEDLINE | ID: mdl-12032297

ABSTRACT

Matrix metalloproteinases (MMPs) are a family of multidomain enzymes involved in the physiological degradation of connective tissue, as well as in pathological states such as tumor invasion and arthritis. Apart from transcriptional regulation, MMPs are controlled by proenzyme activation and a class of specific tissue inhibitors of metalloproteinases (TIMPs) that bind to the catalytic site. TIMP-2 is a potent inhibitor of MMPs, but it has also been implicated in a unique cell surface activation mechanism of latent MMP-2/gelatinase A/type IV collagenase (proMMP-2), through its binding to the hemopexin domain of proMMP-2 on the one hand and to a membrane-type MMP activator on the other. The present crystal structure of the human proMMP-2/TIMP-2 complex reveals an interaction between the hemopexin domain of proMMP-2 and the C-terminal domain of TIMP-2, leaving the catalytic site of MMP-2 and the inhibitory site of TIMP-2 distant and spatially isolated. The interfacial contact of these two proteins is characterized by two distinct binding regions composed of alternating hydrophobic and hydrophilic interactions. This unique structure provides information for how specificity for noninhibitory MMP/TIMP complex formation is achieved.


Subject(s)
Matrix Metalloproteinase Inhibitors , Tissue Inhibitor of Metalloproteinase-2/chemistry , Amino Acid Sequence , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Matrix Metalloproteinase 2/chemistry , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Structure, Secondary , Sequence Alignment , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...