Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36615474

ABSTRACT

We present a visual tool and facile method to detect MCF-7 breast cancer cells by using YVO4:Eu3+@silica-NH-GDA-IgG bio-nanocomplexes. To obtain these complexes, YVO4:Eu3+ nanoparticles with a uniform size of 10-25 nm have been prepared firstly by the hydrothermal process, followed by surface functionalization to be bio-compatible and conjugated with cancer cells. The YVO4:Eu3+@silica-NH-GDA-IgG nanoparticles exhibited an enhanced red emission at 618 nm under an excitation wavelength of 355 nm and were strongly coupled with MCF-7 breast cancer cells via biological conjugation. These bio-nanocomplexes showed a superior sensitiveness for MCF-7 cancer cell labelling with a detection percentage as high as 82%, while no HEK-293A healthy cells were probed under the same conditions of in vitro experiments. In addition, the detection percentage of MCF-7 breast cancer cells increased significantly via the functionalization and conjugation of YVO4:Eu3+ nanoparticles. The experimental results demonstrated that the YVO4:Eu3+@silica-NH-GDA-IgG bio-nanocomplexes can be used as a promising labelling agent for biomedical imaging and diagnostics.


Subject(s)
Breast Neoplasms , Silicon Dioxide , Humans , Female , MCF-7 Cells , In Vitro Techniques , Immunoglobulin G
2.
Opt Express ; 26(25): 33253-33262, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30645481

ABSTRACT

We numerically and experimentally investigate a broadband, polarization-independent and wide-incident-angle metamaterial perfect absorber (MPA) based on conductive polymer. By optimizing the electrical conductivity of the polymer, a 16.7 GHz broadband MPA is observed with the absorptivity greater than 80% for both transverse magnetic and electric polarization. The measurement results performed in the range 8-18 GHz show a diametrical concatenation with simulation results and theoretical analysis. The absorption mechanism is explained by demonstrating the influence of polymer conductivity on the dissipated power, the equivalent impedance, and the induced electric field. Our work may contribute to further studies on broadband MPA using for various applications.

3.
Opt Express ; 20(14): 15418-26, 2012 Jul 02.
Article in English | MEDLINE | ID: mdl-22772238

ABSTRACT

High quality opal photonic crystals (PhCs) were successfully fabricated by self-assembling of monodisperse Eu(3+)/SiO(2) core/shell nanospheres. Angular resolved photoluminescence (PL) spectra of a PhC sample were measured with different pumping powers, and its PL emission strongly depended on spectroscopic position of the photonic stop band and the optical pumping power. Suppression of the PL occurred in the directions where the emission lines aligned with the center of the photonic stop band. Suppression and enhancement of the PL were observed at low- and high-pumping powers, respectively, in the directions where the emission lines were located at the edges of the photonic stop band. When pumping power exceeded 6 µJ/pulse, a super-linear dependence was found between the pumping power and PL intensity. The dramatic enhancement of PL was attributed to the amplification of spontaneous emission resulted from the creation of large population inversion and the slow group velocity of the emitted light inside the PhC. The opal PhC provided highly angular-selective quasi-monochromatic PL output, which can be useful for a variety of optical applications.

4.
Opt Express ; 20(28): 29266-75, 2012 Dec 31.
Article in English | MEDLINE | ID: mdl-23388752

ABSTRACT

We present a novel type of surface-enhanced Raman scattering (SERS) substrate constituted of a 3-dimensinal polymeric inverse opal (IO) photonic crystal frame with gold nanorods (Au-NRs) decorating on the top layer. This substrate employs resonant excitation as well as constructive backward scattering of Raman signals to produce large enhancement of SERS output. For the incoming excitation, Au-NRs with appropriate aspect ratio were adopted to align their longitudinal localized surface plasmon band with the excitation laser wavelength. For the outgoing SERS signal, the spectral position of the photonic band gap was tuned to reflect Raman-scattered light constructively. This SERS substrate produces not only strong but also uniform SERS output due to the well control of Au-NRs distribution by the periodic IO structure, readily suitable for sensing applications.

5.
Opt Express ; 17(24): 21522-9, 2009 Nov 23.
Article in English | MEDLINE | ID: mdl-19997393

ABSTRACT

A novel hybrid surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles decorated inverse opal (IO) photonic crystal (PhC) is presented. In addition to the enhancement contributed from Au nanoparticles, a desired Raman signal can be selectively further enhanced by appropriately overlapping the center of photonic bandgap of the IO PhC with the wavelength of the Raman signal. Furthermore, the lattice structure of the IO PhC provides excellent control of the distribution of Au nanoparticles to produce SERS spectra with high uniformity. The new design of SERS substrate provides extra maneuverability for ultra-high sensitivity sensor applications.


Subject(s)
Biosensing Techniques , Gold/chemistry , Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , Crystallization , Metal Nanoparticles , Microscopy, Electron, Scanning , Models, Chemical , Nanotechnology/methods , Optics and Photonics , Photons , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...