Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(9)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37175075

ABSTRACT

Based on the data of the gas electron diffraction/mass spectrometry (GED/MS) experiment, the composition of the vapor over rhenium tetrafluoride at T = 471 K was established, and it was found that species of the Re2F8 is present in the gas phase. The geometric structure of the Re2F8 molecule corresponding to D4h symmetry was found, and the following geometric parameters of the rh1 configuration were determined: rh1(Re-Re) = 2.264(5) Å, rh1(Re-F) = 1.846(4) Å, α(Re-Re-F) = 99.7(0.2)°, φ(F-Re-Re-F) = 2.4 (3.6)°. Calculations by the self-consistent field in full active space approximation showed that for Re2F8, the wave function of the 1A1g ground electronic state can be described by the single closed-shell determinant. For that reason, the DFT method was used for a structural study of Re2X8 molecules. The description of the nature of the Re-Re bond was performed in the framework of Atom in Molecules and Natural Bond Orbital analysis. The difference in the experimental values of r(Re-Re) in the free Re2F8 molecule and the [Re2F8]2- dianion in the crystal corresponds to the concept of a triple σ2π4 (ReIV-ReIV) bond and a quadruple σ2π4δ2 (ReIII-ReIII) bond, respectively, which are formed between rhenium atoms due to the interaction of d-atomic orbitals. The enthalpy of dissociation of the Re2F8 molecular form in two monomers ReF4 (ΔdissH°(298) = 109.9 kcal/mol) and the bond energies E(Re-Re) and E(Re-X) in the series Re2F8→Re2Cl8→Re2Br8 molecules were estimated. It is shown that the Re-Re bond energy weakly depends on the nature of the halogen, while the symmetry of the Re2Br8 (D4d) geometric configuration differs from the symmetry of the Re2F8 and Re2Cl8 (D4h) molecules.

2.
Int J Mol Sci ; 23(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36430400

ABSTRACT

By DFT method with B3LYP, PBE, CAM-B3LYP, and B97D functionals, it was found that the molecule 4-(4-tritylphenoxy)phthalonitrile (TPPN) has four conformers. The geometric structure, vibrational frequencies, electronic characteristics, and thermodynamic functions of conformers, as well as the structure and energy of transition states, were determined. IR spectrum of TPPN film contains vibrational bands belonging to different conformers. The assignment of bands was performed basing the distribution of normal vibration energy on internal coordinates. A synchronous electron diffraction/mass spectrometric experiment was performed to determine the structure of conformers in a saturated TPPN vapor. The elemental composition of the ions recorded in the mass spectrum indicates the thermal stability of TPPN at least up to T = 200 °C. The difference in the structure of tetrasubstituted metal phthalocyanines, which can be synthesized from different TPPN conformers, has been shown.


Subject(s)
Spectrum Analysis, Raman , Vibration , Molecular Structure , Models, Molecular , Spectroscopy, Fourier Transform Infrared , Indoles
SELECTION OF CITATIONS
SEARCH DETAIL
...