Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 59(11): 1425-1438.e8, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38574735

ABSTRACT

Mammalian Notch signaling occurs when the binding of Delta or Jagged to Notch stimulates the proteolytic release of the Notch intracellular domain (NICD), which enters the nucleus to control target gene expression. To determine the temporal dynamics of events associated with Notch signaling under native conditions, we fluorescently tagged Notch and Delta at their endogenous genomic loci and visualized them upon pairing of receiver (Notch) and sender (Delta) cells as a function of time after cell contact. At contact sites, Notch and Delta immediately accumulated at 1:1 stoichiometry in synapses, which resolved by 15-20 min after contact. Synapse formation preceded the entrance of the Notch extracellular domain into the sender cell and accumulation of NICD in the nucleus of the receiver cell, which approached a maximum after ∼45 min and was prevented by chemical and genetic inhibitors of signaling. These findings directly link Notch-Delta synapse dynamics to NICD production with spatiotemporal precision.


Subject(s)
Cell Nucleus , Receptors, Notch , Signal Transduction , Synapses , Humans , Cell Nucleus/metabolism , Receptors, Notch/metabolism , Synapses/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Protein Domains , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics
2.
bioRxiv ; 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38464278

ABSTRACT

Mind bomb 1 (MIB1) is a RING E3 ligase that ubiquitinates Notch ligands, a necessary step for induction of Notch signaling. The structural basis for binding of the JAG1 ligand by the N-terminal region of MIB1 is known, yet how the ankyrin (ANK) and RING domains of MIB1 cooperate to catalyze ubiquitin transfer from E2~Ub to Notch ligands remains unclear. Here, we show that the third RING domain and adjacent coiled coil region of MIB1 (ccRING3) drives MIB1 dimerization and that ubiquitin transfer activity of MIB1 relies solely on RING3. We report x-ray crystal structures of a UbcH5B-ccRING3 complex as a fusion protein and of the ANK region. Directly tethering the N-terminal region to ccRING3 forms a minimal MIB1 protein, which is sufficient to induce a Notch response in receiver cells. Together, these studies define the functional elements of an E3 ligase needed for ligands to induce a Notch signaling response.

3.
bioRxiv ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37808809

ABSTRACT

Mammalian Notch signaling occurs when binding of Delta or Jagged to Notch stimulates proteolytic release of the Notch intracellular domain (NICD), which enters the nucleus to regulate target gene expression. To determine the temporal dynamics of events associated with Notch signaling under native conditions, we fluorescently tagged Notch and Delta at their endogenous genomic loci and visualized them upon pairing of receiver (Notch) and sender (Delta) cells as a function of time after cell contact. At contact sites, Notch and Delta immediately accumulated at 1:1 stoichiometry in synapses, which resolved by 15-20 min after contact. Synapse formation preceded entrance of the Notch extracellular domain into the sender cell and accumulation of NICD in the nucleus of the receiver cell, which approached a maximum after ∼45 min and was prevented by chemical and genetic inhibitors of signaling. These findings directly link Notch-Delta synapse dynamics to NICD production with unprecedented spatiotemporal precision.

4.
Sci Signal ; 16(796): eadg6474, 2023 08.
Article in English | MEDLINE | ID: mdl-37527352

ABSTRACT

Notch signaling relies on ligand-induced proteolysis of the transmembrane receptor Notch to liberate a nuclear effector that drives cell fate decisions. Upon ligand binding, sequential cleavage of Notch by the transmembrane protease ADAM10 and the intracellular protease γ-secretase releases the Notch intracellular domain (NICD), which translocates to the nucleus and forms a complex that induces target gene transcription. To map the location and timing of the individual steps required for the proteolysis and movement of Notch from the plasma membrane to the nucleus, we used proximity labeling with quantitative, multiplexed mass spectrometry to monitor the interaction partners of endogenous NOTCH2 after ligand stimulation in the presence of a γ-secretase inhibitor and as a function of time after inhibitor removal. Our studies showed that γ-secretase-mediated cleavage of NOTCH2 occurred in an intracellular compartment and that formation of nuclear complexes and recruitment of chromatin-modifying enzymes occurred within 45 min of inhibitor washout. These findings provide a detailed spatiotemporal map tracking the path of Notch from the plasma membrane to the nucleus and identify signaling events that are potential targets for modulating Notch activity.


Subject(s)
Amyloid Precursor Protein Secretases , Receptors, Notch , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Ligands , Receptors, Notch/genetics , Receptors, Notch/metabolism , Cell Membrane/metabolism , Signal Transduction , Receptor, Notch1/genetics
5.
Development ; 147(21)2020 06 15.
Article in English | MEDLINE | ID: mdl-32376681

ABSTRACT

Cilia are complex cellular protrusions consisting of hundreds of proteins. Defects in ciliary structure and function, many of which have not been characterised molecularly, cause ciliopathies: a heterogeneous group of human syndromes. Here, we report on the FOXJ1 target gene Cfap206, orthologues of which so far have only been studied in Chlamydomonas and Tetrahymena In mouse and Xenopus, Cfap206 was co-expressed with and dependent on Foxj1 CFAP206 protein localised to the basal body and to the axoneme of motile cilia. In Xenopus crispant larvae, the ciliary beat frequency of skin multiciliated cells was enhanced and bead transport across the epidermal mucociliary epithelium was reduced. Likewise, Cfap206 knockout mice revealed ciliary phenotypes. Electron tomography of immotile knockout mouse sperm flagella indicated a role in radial spoke formation reminiscent of FAP206 function in Tetrahymena Male infertility, hydrocephalus and impaired mucociliary clearance of the airways in the absence of laterality defects in Cfap206 mutant mice suggests that Cfap206 may represent a candidate for the subgroup of human primary ciliary dyskinesias caused by radial spoke defects.


Subject(s)
Brain/embryology , Brain/metabolism , Cytoskeletal Proteins/metabolism , Forkhead Transcription Factors/metabolism , Lung/metabolism , Mucociliary Clearance , Sperm Motility , Animals , Axoneme/metabolism , Basal Bodies/metabolism , Cilia/metabolism , Cytoskeletal Proteins/chemistry , Embryonic Development , Epithelial Cells/metabolism , Fluorescence , Hydrocephalus/pathology , Infertility, Male/pathology , Male , Mice, Knockout , Mucus/metabolism , Mutation/genetics , Protein Transport , Spermatozoa/metabolism , Spermatozoa/ultrastructure , Xenopus laevis/embryology , Xenopus laevis/metabolism
6.
Dev Biol ; 459(2): 109-125, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31884020

ABSTRACT

Malfunctions of motile cilia cause a variety of developmental defects and diseases in humans and animal model organisms. Defects include impaired mucociliary clearance of the airways, sperm immotility, hydrocephalus and organ laterality. Here, we characterize the evolutionary conserved Cfap43 gene by loss-of-function experiments in the mouse and the frog Xenopus laevis. Cfap43 is expressed in tissues carrying motile cilia and acts as a target gene of the transcription factor FOXJ1, which is essential for the induction of motile ciliogenesis. We show that CFAP43, a protein of unknown biochemical function, localizes to the ciliary axoneme. CFAP43 is involved in the regulation of the beating frequency of tracheal cilia and loss of CFAP43 causes severe mucus accumulation in the nasal cavity. Likewise, morphant and crispant frog embryos revealed impaired function of motile cilia of the larval epidermis, a model for airway mucociliary epithelia. CFAP43 participates in the formation of flagellar axonemes during spermatogenesis as mice mutant for Cfap43 display male infertility, consistent with observations in male sterile patients. In addition, mice mutant for Cfap43 display early onset hydrocephalus. Together, these results confirm the role of CFAP43 in the male reproductive tract and pinpoint additional functions in airway epithelia mucus clearance and brain development.


Subject(s)
Cilia/metabolism , Cytoskeletal Proteins/metabolism , Xenopus Proteins/metabolism , Animals , Cytoskeletal Proteins/genetics , Epidermal Cells/metabolism , Forkhead Transcription Factors/metabolism , Hydrocephalus/genetics , Infertility, Male/genetics , Male , Mice , Mice, Knockout , Sperm Tail/metabolism , Spermatogenesis/genetics , Spermatozoa/metabolism , Trachea/cytology , Xenopus Proteins/genetics , Xenopus laevis
7.
Elife ; 72018 10 05.
Article in English | MEDLINE | ID: mdl-30289388

ABSTRACT

DLL1 and DLL4 are Notch ligands with high structural similarity but context-dependent functional differences. Here, we analyze their functional divergence using cellular co-culture assays, biochemical studies, and in vivo experiments. DLL1 and DLL4 activate NOTCH1 and NOTCH2 differently in cell-based assays and this discriminating potential lies in the region between the N-terminus and EGF repeat three. Mice expressing chimeric ligands indicate that the ectodomains dictate ligand function during somitogenesis, and that during myogenesis even regions C-terminal to EGF3 are interchangeable. Substitution of NOTCH1-interface residues in the MNNL and DSL domains of DLL1 with the corresponding amino acids of DLL4, however, does not disrupt DLL1 function in vivo. Collectively, our data show that DLL4 preferentially activates NOTCH1 over NOTCH2, whereas DLL1 is equally effective in activating NOTCH1 and NOTCH2, establishing that the ectodomains dictate selective ligand function in vivo, and that features outside the known binding interface contribute to their differences.


Subject(s)
Intercellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Receptor, Notch1/metabolism , Receptor, Notch2/metabolism , Adaptor Proteins, Signal Transducing , Animals , Calcium-Binding Proteins , DNA Mutational Analysis , Intercellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Mice , Mice, Transgenic , Protein Binding , Protein Domains , Protein Interaction Mapping , Recombinant Proteins/metabolism
8.
PLoS Genet ; 11(6): e1005328, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26114479

ABSTRACT

Notch signalling is a fundamental pathway that shapes the developing embryo and sustains adult tissues by direct communication between ligand and receptor molecules on adjacent cells. Among the ligands are two Delta paralogues, DLL1 and DLL4, that are conserved in mammals and share a similar structure and sequence. They activate the Notch receptor partly in overlapping expression domains where they fulfil redundant functions in some processes (e.g. maintenance of the crypt cell progenitor pool). In other processes, however, they appear to act differently (e.g. maintenance of foetal arterial identity) raising the questions of how similar DLL1 and DLL4 really are and which mechanism causes the apparent context-dependent divergence. By analysing mice that conditionally overexpress DLL1 or DLL4 from the same genomic locus (Hprt) and mice that express DLL4 instead of DLL1 from the endogenous Dll1 locus (Dll1Dll4ki), we found functional differences that are tissue-specific: while DLL1 and DLL4 act redundantly during the maintenance of retinal progenitors, their function varies in the presomitic mesoderm (PSM) where somites form in a Notch-dependent process. In the anterior PSM, every cell expresses both Notch receptors and ligands, and DLL1 is the only activator of Notch while DLL4 is not endogenously expressed. Transgenic DLL4 cannot replace DLL1 during somitogenesis and in heterozygous Dll1Dll4ki/+ mice, the Dll1Dll4ki allele causes a dominant segmentation phenotype. Testing several aspects of the complex Notch signalling system in vitro, we found that both ligands have a similar trans-activation potential but that only DLL4 is an efficient cis-inhibitor of Notch signalling, causing a reduced net activation of Notch. These differential cis-inhibitory properties are likely to contribute to the functional divergence of DLL1 and DLL4.


Subject(s)
Gene Expression Regulation, Developmental , Intercellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Receptors, Notch/metabolism , Adaptor Proteins, Signal Transducing , Animals , Calcium-Binding Proteins , Extremities/embryology , Intercellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Mesoderm/metabolism , Mice, Transgenic , Protein Structure, Tertiary , Retina/embryology , Signal Transduction
9.
PLoS Genet ; 11(12): e1005749, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26720614

ABSTRACT

CC2D1A and CC2D1B belong to the evolutionary conserved Lgd protein family with members in all multi-cellular animals. Several functions such as centrosomal cleavage, involvement in signalling pathways, immune response and synapse maturation have been described for CC2D1A. Moreover, the Drosophila melanogaster ortholog Lgd was shown to be involved in the endosomal trafficking of the Notch receptor and other transmembrane receptors and physically interacts with the ESCRT-III component Shrub/CHMP4. To determine if this function is conserved in mammals we generated and characterized Cc2d1a and Cc2d1b conditional knockout mice. While Cc2d1b deficient mice displayed no obvious phenotype, we found that Cc2d1a deficient mice as well as conditional mutants that lack CC2D1A only in the nervous system die shortly after birth due to respiratory distress. This finding confirms the suspicion that the breathing defect is caused by the central nervous system. However, an involvement in centrosomal function could not be confirmed in Cc2d1a deficient MEF cells. To analyse an influence on Notch signalling, we generated intestine specific Cc2d1a mutant mice. These mice did not display any alterations in goblet cell number, proliferating cell number or expression of the Notch reporter Hes1-emGFP, suggesting that CC2D1A is not required for Notch signalling. However, our EM analysis revealed that the average size of endosomes of Cc2d1a mutant cells, but not Cc2d1b mutant cells, is increased, indicating a defect in endosomal morphogenesis. We could show that CC2D1A and its interaction partner CHMP4B are localised on endosomes in MEF cells, when the activity of the endosomal protein VPS4 is reduced. This indicates that CC2D1A cycles between the cytosol and the endosomal membrane. Additionally, in rescue experiments in D. melanogaster, CC2D1A and CC2D1B were able to functionally replace Lgd. Altogether our data suggest a functional conservation of the Lgd protein family in the ESCRT-III mediated process in metazoans.


Subject(s)
Endocytosis/physiology , Receptors, Notch/metabolism , Repressor Proteins/metabolism , Animals , Animals, Newborn , Centrosome/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Endosomal Sorting Complexes Required for Transport , Endosomes/metabolism , Epithelium/metabolism , Female , Gene Expression Regulation, Developmental , Intestinal Mucosa/metabolism , Intestines/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Receptors, Notch/genetics , Repressor Proteins/genetics , Signal Transduction/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Vesicular Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...