Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 320: 115878, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36056491

ABSTRACT

The non-essential element cadmium (Cd) is one of the most problematic priority soil pollutants due to multitude of pollution sources, mobility in the environment and high toxicity to all living organisms. This strongly limits also the number and occurrence of species - Cd hyperaccumulators to be used for soil phytoremediation. However, efficient Cd hyperaccumulator Solanum nigrum L. appeared to commonly occur worldwide as a representative of Solanum nigrum complex of a great taxonomic diversity. This led to the idea that the search among different ecotypes of Solanum nigrum L. may result in the identifying the most efficient Cd hyperaccumulator without applying to soil any additional measures such as chemical ligands. In this first pioneering comparative study, three randomly selected ecotypes of S. nigrum L. ssp. nigrum from Shenyang (SY) and Hanzhong (HZ) in China, and Kyoto (KY) in Japan were used in pot experiments at soil treatments from 0 to 50 mg Cd kg-1. The Cd accumulation capacity appeared to represent KY > HZ > SY range, KY ecotype accumulating up to 73%, and HZ ecotype up to 67% bigger total Cd load than SY ecotype. At Cd content in soil up to 10 mg kg-1, no significant effect on the all ecotype biomass, photosynthetic activities, contents of first line defense antioxidant enzymes (CAT, SOD, GPX), and scavenging antioxidants ASA, GSH, was observed. At Cd in soil>10 mg kg-1all these parameters showed decreasing, and cell damage indicator MDA increasing trend, however total accumulated Cd load further increased up to 30 mg kg Cd in soil in all ecotypes in the same KY > HZ > SY sequence. The study proved the great potential of enhancing Cd accumulation capacity of S. nigrum species by selecting the most efficient ecotypes among commonly occurring representatives of S. nigrum complex worldwide. Moreover, these first comparative experiments convinced that the cosmopolitan character and great variety of species/subspecies belonging to Solanum nigrum complex all over the world opens the new area for successful soil phytoremediation with the use of the most appropriate eco/genotypes of S. nigtum as a tool for the best Cd-contaminated soil management practice.


Subject(s)
Soil Pollutants , Solanum nigrum , Antioxidants/analysis , Antioxidants/pharmacology , Biodegradation, Environmental , Cadmium/chemistry , Ecotype , Plant Roots/chemistry , Soil/chemistry , Soil Pollutants/analysis
2.
Sci Total Environ ; 740: 139648, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-32927528

ABSTRACT

Soybean is recognized as one of the most important prospective protein sources for human nutrition under conditions of climate change and population growth. Occurrence of Se and Zn deficiency in vast areas over the globe inhabited by up to 2 billion people, induced search for a comprehensive solution to these problems through the efficient Se/Zn biofortification of soybean seeds (beans). To assess the Se/Zn accumulation efficiency and the physiological status of soybean plants, a pot experiment on Se and Zn enrichment in beans was conducted. It consisted of applying 15 different Se-deficient soil treatments with these elements during the flowering phase, alone or in dose combinations. Application of Se alone, besides Se accumulation in soybean, reduced Zn uptake from soil, but caused alterations in Zn translocation, and its multiple enrichment in beans. Addition of Zn alone promoted both Zn and Se enrichment in beans. Joint Se/Zn application in increasing doses appeared to have a strong synergistic effect on accumulation of these elements in beans and enhanced the physiological functions of the soybean. This manifested itself in the growth of photosynthetic production and soybean biomass, and in the improvement of lipid peroxidation status (REC, MDA and proline content indices). Toxicity symptoms indicated the maximum Se/Zn doses. Several-fold higher contents of Se and Zn in soybean straw compared to spiked soil suggest its possible use as Se/Zn-rich soil amendment in accordance with the circular economy goals. These novel findings may significantly contribute to human health improvement in Se and Zn deficient regions.


Subject(s)
Glycine max , Soil , Biofortification , Humans , Prospective Studies , Zinc/analysis
3.
J Hazard Mater ; 394: 122553, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32222552

ABSTRACT

The effects of soil treatment with aqueous extracts from three hyperaccumulators on Cd and Pb accumulation by Solanum nigrum L. were determined. The stem (S-RG) and leaf extracts (L-RG) of Rorippaglobosa (Turcz.) Thell., and stem extract (S-BP) of Bidens pilosa L. significantly enhanced Cd and Pb total accumulation capacity of S. nigrum compared to control (by 44 %, 47 %, and 29 % for Cd and by 28 %, 28 % and 21 % for Pb, respectively), while EDTA caused its 9 % and 15 % decrease due to the plant biomass reduction (by 33 %). The leaching experiments reflected affinity of additives to metal mobilization in soils. The concentrations of total organic acid in S-RG, L-RG and S-BP were the highest among studied extracts, which besides the beneficial effect on the soil environment (microbe number and enzyme activities), may be partial reasons of strong promotion of S. nigrum accumulation capacity for Cd and Pb. It was shown that hyperaccumulation properties of a plant are not a prerequisite of enhancing effect of the plant-based soil additive on the metal accumulation capacity of the target living hyperaccumultor. The plant-based chelators were found to be promising candidates for EDTA and other chemicals replacement in promoting efficient and environmentally safe phytoremediation.


Subject(s)
Cadmium/metabolism , Lead/metabolism , Plant Extracts/pharmacology , Soil Pollutants/metabolism , Solanum nigrum/drug effects , Solanum nigrum/metabolism , Bidens/chemistry , Biodegradation, Environmental , Edetic Acid/pharmacology , Hydrogen-Ion Concentration , Plant Leaves/chemistry , Plant Stems/chemistry , Rorippa/chemistry , Soil/chemistry
4.
Sci Total Environ ; 705: 135776, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31972936

ABSTRACT

A novel approach to using peatlands for assessment of cumulative contributions from long-range transport of pollutants (LRTP) - airborne trace elements - to spatial pollution was exemplified in evaluating retrospective atmospheric deposition of priority pollutants (Pb, Cd, Hg) in peat bogs in Norway in areas minor affected by local sources of pollution and in NW Poland located on the way of possible LRTP from Poland to Norway. Peat from the corresponding 14C-dated layers of five ombrotrophic bogs in each country, was analysed for trace element contents. Pollutant concentrations/load distribution along the peat profiles related to bulk density has given a clear evidence of uneven density-dependent temporal vertical migration of all studied elements that distorts the chronology of their deposition. Much higher loads of Pb, Cd and Hg in southern Norwegian bogs than in bogs located in NW Poland proved transboundary transport from neighbouring highly industrialized European countries to be much more significant contributor to high deposition of the priority pollutants in this area and rather excludes LRTP from Poland as a major source of total land pollution in southernmost Norway. The study showed excellent applicability of peat bogs for the exact assessment of retrospective cumulative pollutant loads from LRTP, but not for the identification of deposition chronology. Combining the use of ombrotrophic peat bogs as tools for retrospective monitoring of cumulative land pollution with airborne elements with current LRTP data within the Cooperative Programme for Monitoring and Evaluation of the Long-Range Transmission of Air Pollutants in Europe (EMEP) may provide a complete reliable picture of the effect of anthropogenic emissions on soil quality and create a foundation of optimum environmental policy and activities in this field.

5.
Environ Pollut ; 255(Pt 2): 113270, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31563768

ABSTRACT

Rorippa globosa (Turcz.) Thell. is known as Cd hyperaccumulator, however neither hyperaccumulation nature, nor affecting factors like the effect of Cd compounds entering soil from different sources, or of specific soil amendments, are not yet satisfactorily clarified. In the pot culture experiment, Cd accumulation by R. globosa from soils spiked with 3 and 9 mg Cd kg-1 in the form of Cd(NO3)2, CdCl2, CdBr2, CdI2, CdSO4, CdF2, Cd(OH)2, CdCO3, Cd3(PO4)2, CdS and effect of soil amendment with glutathione (GSH) were investigated. Accumulation capacity of R. globosa for Cd appeared to reflect its extractability in soils and was about two-fold bigger for high soluble compounds than for low-soluble ones. At that, the differences between the accumulation of Cd originating from high soluble compound group did not exceed 20%, while the differences within the low soluble compound group were insignificant (p < 0.05). The analysis of Cd uptake, uptake factor (UF), enrichment factor (EF) and translocation factor (TF) patterns revealed that Cd hyperaccumulating properties of R. globosa are based on the high water/nutrients demand and strong tolerance to Cd, although weak protection against Cd uptake by root system was also observed. Amendment with GSH enhanced Cd availability to plant and its uptake from soil, but exerted no effect on Cd translocation in plants. In the light of the results, the use of R. globosa for phytoremediation of moderately polluted agricultural lands as forecrop or aftercrop, and the GSH-assisted phytoremediation of highly polluted post-industrial sites seem to be viable options.


Subject(s)
Biodegradation, Environmental , Cadmium/metabolism , Glutathione/metabolism , Rorippa/metabolism , Soil Pollutants/metabolism , Agriculture , Cadmium/analysis , Plants , Soil , Soil Pollutants/analysis
6.
Waste Manag Res ; 36(12): 1127-1136, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30375270

ABSTRACT

Efforts directed to reduction of greenhouse gas emissions have led to the introduction of new firing/co-firing technologies and alternative fuels in the coal-based power industry. This has resulted in the formation of combustion products with new properties that can affect the reuse of these wastes and/or pose a hazard to the environment. One of the power-plant fly ash (FA) reuse options is its application as a solidifying dense mixture with water for backfilling mine workings or in engineering constructions. In this comparative study, geotechnical properties of three groups of FA were evaluated: (i) weathered and freshly generated ash from hard coal combustion in conventional pulverized coal boilers without (C-PCA, C-PFA) and with selective non-catalytic reduction installations for NO x reduction (NC-PFA); (ii) FA from hard coal co-firing with alternative fuels: off gases (GC-PFA) or biomass (BC-PFA) in pulverized coal boilers; (iii) FA from coal (C-FFA) or biomass combustion (B-FFA) in fluidized-bed boilers. The transportability, bonding and solidification properties, uniaxial compression strength, and rewetting of dense mixtures were evaluated by measurements of volumetric density, fluidity, water retention capacity, bonding time, solidification time, uniaxial compression test, and slakeability at the background of the FA chemical composition. Calcareous C-FFA > B-FFA displayed the best geotechnical properties. Other materials showed poorer geotechnical properties than FFA and could be aligned in the order BC-PFA > GC-PFA > NC-PFA > C-PFA > C-PCA.


Subject(s)
Coal Ash , Coal , Biomass , Gases , Power Plants
7.
Environ Sci Pollut Res Int ; 24(29): 23161-23167, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28828736

ABSTRACT

Phytoremediation with the use of hyperaccumulating plant species to remove excess trace metals from contaminated soil and water is considered a cost-effective non-invasive technique. Over 400 plant taxa worldwide have been identified as natural hyperaccumulators, but only very few are reported to hyperaccumulate Cd. Bidens pilosa L. is a newly found, promising Cd hyperaccumulator, although its potential to accumulate Cd and mechanism of this process are not yet well known. This paper was aimed at exploring hyperaccumulation capacity of B. pilosa for Cd, and its translocation behavior related to cell membrane permeability. The highest Cd concentration in shoots of B. pilosa grown in soil was 405.91 mg kg-1 and of that cultured in nutrient solution 1651.68 mg kg-1, indicating very high accumulation potential. Cd concentrations in the root, stem, leaf, and shoot of B. pilosa cultured in nutrient solution were all much higher than those in soil, while biomass development was considerably lower. This resulted in lesser differences between Cd maximum accumulation loads in the shoot (462 and 365 µg pot-1) and in the root (100 and 96 µg pot-1) of B. pilosa grown in solution and in soil, respectively. Relative electric conductivity (REC), K+ relative permeability ratio, and MDA (malondialdehyde) contents, which are major indices expressing cell membrane permeability, appeared to be closely related to Cd translocation and accumulation. The relative molecular mechanism of Cd accumulation/translocation in B. pilosa was found of importance and needs to be elucidated.


Subject(s)
Bidens/metabolism , Cadmium/analysis , Cell Membrane Permeability , Soil Pollutants/analysis , Bidens/drug effects , Biodegradation, Environmental , Biomass , Cadmium/metabolism , Cadmium/toxicity , Cell Membrane Permeability/drug effects , Oxidative Stress/drug effects , Soil/chemistry , Soil Pollutants/metabolism , Soil Pollutants/toxicity
8.
J Environ Manage ; 156: 167-80, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25845998

ABSTRACT

This paper is the second one of two companion papers. It presents results of a study aimed at assessing the effect of real time weathering transformations of Coal Combustion Residuals (CCRs) on trace element binding/release and its environmental implications. The study is based on the chemical composition of pore solutions extracted from primary alkaline Class F CCRs, 0 to >40 years old, sampled from the surface layer and vertical profiles at four selected typical CCRs impoundments. The long-term weathering transformations were found to lead to gradual acidification to pH < 4 of this primary alkaline material, due to internal processes of mineral formation/dissolution. Direct analysis of the pore solutions and a statistical analysis have shown different susceptibility of many trace elements to release during internal acidification processes occurring at consecutive Wash-out I (pH > 8), Dissolution II (8 ≥ pH ≥ 7) and Delayed Release III (pH < 7) stages of weathering compared to that at external sources of pH. The elements occurring in the CCRs are represented by three major groups showing the highest release to pore water: (a) within the acidic pH range (Na, K, Zn, Fe, Cd, Mo, Cr, B, Mn, Be and Ni; (b) within the near-neutral pH range (Al, V, Ba, Cu and Ag) and also Sb, Hg and Co not analyzed at pH < 7; (c) within the alkaline pH range (Ca, Mg, Pb, As, Se, Tl). Elements whose concentrations exceeded the threshold values for good chemical status of groundwater (TVs) at all weathering stages over the entire pH range studied were K, Al, B, Cr, Mo, V, As, Se, Sb and Hg, while Na, Zn, Fe and Cd showed particularly high delayed release at pH < 7, thus confirming the need of a precautionary approach to CCRs uncontrolled disposal and bulk reuse as common fill in view of long term environmental safety and sustainability.


Subject(s)
Coal Ash/chemistry , Industrial Waste/analysis , Trace Elements/analysis , Weather , Hydrogen-Ion Concentration , Water Pollutants, Chemical/analysis
9.
J Environ Manage ; 156: 128-42, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25841194

ABSTRACT

Coal combustion residuals (CCRs) are one of the most abundant high-volume waste materials disposed in impoundments worldwide. Some methods of CCR recycling, e.g. their use as structural fill for low lying areas or as soil amendment, also expose this material to atmospheric conditions. Combustion processes result in concentration of trace elements in CCRs at about an order of magnitude compared to coal. In order to assess an effect of long-term weathering transformations of CCRs on trace element binding/release, a study has been carried out. It is based on the chemical composition of real pore solutions extracted from the most abundant primary alkaline Class F bituminous CCRs, 0 to >40 years old, sampled from the surface layer and vertical profiles at four different impoundments. In this part of the study, results of a hydrogeochemical simulation of the saturation state of real pore solutions with respect to mineral phases of CCRs with use of the PHREEQC program, related to actual pH values reflecting the full cycle of weathering transformations, have been discussed. This study is the first geochemical proof of the general trend towards a progressive acidification up to pH < 4 of primary alkaline CCRs due to release of protons during internal processes of formation of gibbsite and aluminosilicate minerals, buffered by carbonates at the alkaline - near-neutral stages, and followed by parallel dissolution and buffering by aluminosilicates at pH < 7 after carbonate depletion, to the level up to pH∼3.5-4.0. The intrinsic geochemical changes have resulted in the different susceptibility of trace elements to release and associated changes in risk to the environment at consecutive stages of weathering.


Subject(s)
Coal Ash/chemistry , Trace Elements/analysis , Weather , Carbonates/analysis , Hydrogen-Ion Concentration , Minerals/chemistry , Recycling , Waste Management/methods , Water Pollutants, Chemical/chemistry
10.
J Hazard Mater ; 288: 51-9, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25682517

ABSTRACT

Bioleaching by Aspergillus niger strain SY1 combined with Fenton-like reaction was optimized to improve trace metal removal and dewaterability of dredged sediments. The major optimized parameters were the duration of bioleaching and H2O2 dose in Fenton-like process (5 days and 2g H2O2/L, respectively). Bioleaching resulted in the removal of ≈90% of Cd, ≈60% of Zn and Cu, ≈20% of Pb, and in decrease of sediment pH from 6.6 to 2.5 due to organic acids produced by A. niger. After addition of H2O2, Fenton-like reaction was initiated and further metal removal occurred. Overall efficiency of the combined process comprised: (i) reduction of Cd content in sediment by 99.5%, Cu and Zn by >70% and Pb by 39% as a result of metal release bound in all mobilizable fractions; (ii) decrease of sediment capillary suction time (CST) from 98.2s to 10.1s (by 89.8%) and specific resistance to filtration (SRF) from 37.4×10(12)m/kg to 6.2×10(12)m/kg (by 83.8%), due to reducing amount of extracellular polymeric substances (EPS) by 68.7% and bound water content by 79.1%. The combined process was found to be an efficient method to remove trace metals and improve dewaterability of contaminated dredged sediments.


Subject(s)
Geologic Sediments/analysis , Metals/analysis , Aspergillus niger/metabolism , Biodegradation, Environmental , Cadmium/chemistry , Copper/chemistry , Filtration , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Iron , Sewage , Zinc/chemistry
11.
Environ Sci Pollut Res Int ; 22(3): 1999-2007, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25167813

ABSTRACT

This experiment was used to explore whether the 11 nitrogenous nutrients affect the hyperaccumulation of Rorippa globosa (Turcz.) Thell. to Cd. Pot culture experiments using soil spiked with Cd as CdCl2·2.5H2O and 11 nitrogen-containing chemicals were conducted to determine the efficiency of the accumulation of Cd by R. globosa. Application of all 11 nitrogenous nutrients significantly (p < 0.05) enhanced Cd accumulation by R. globosa (Turcz.) Thell. Two major modes of Cd accumulation were observed: (i) through increase of biomass yield without reduction of Cd uptake and (ii) through increase of Cd uptake efficiency in parallel with increase of biomass yield. Bicarbonate > phosphate > chloride compounds of NH4 enhanced the biomass yield to the greatest extent, while oxalate > nitrate > chloride > and bicarbonate caused a significant increase of Cd uptake by R. globosa. Competition between N and Cd translocation caused either significant reduction of Cd translocation factor or decrease of biomass yield. Of studied nutrients, ammonium bicarbonate NH4HCO3 and ammonium chloride NH4Cl exerted the best joint effect of these two processes on the efficiency of R. globosa as a Cd hyperaccumulator. Application of these chemicals caused increase of Cd concentrations in roots of R. globosa by 35.1 and 41.1 %, and in shoots by 13.9 and 56.4 %, while biomasses of roots increased by 5.8- and 3.8-fold and in shoots by 7.4-fold, and 6.4-fold, respectively, compared to the control. As a result, accumulated load (µg pot(-1)) of Cd in roots increased by 8.2- and 5.8-fold and in shoots by 8.6- and 10.6-fold in both pots. Consequently, chemicals (NH4HCO3 and NH4Cl) that enhanced both Cd enrichment and biomass yield had the greatest effect on the bioaccumulation capacity of R. globosa.


Subject(s)
Cadmium/metabolism , Rorippa/metabolism , Soil Pollutants/metabolism , Biomass , Cadmium/chemistry , Cadmium Chloride , Food , Nitrates/pharmacology , Nitrogen/pharmacology , Plant Roots , Rorippa/chemistry , Soil , Soil Pollutants/chemistry
13.
Environ Int ; 28(8): 783-91, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12605928

ABSTRACT

The effect of complexing anion and adsorbate-adsorbent contact mode (static equilibrium or dynamic non-equilibrium) on binding and partition of Cu(2+), Cd(2+) and Zn(2+) onto organic matter (exemplified in a low-moor peat) was studied. The study comprised comparative batch and column flow-through sorption experiments on monometallic solutions of Me-Cl and Me-SO(4) salts, at pH 4.0, and sequential fractionation of sorbed metals with respect to binding strength. Both the presence of an anion having complexing properties (Cl(-)) as well as a contact mode was found to quantitatively and qualitatively affect the sorption capacity and binding strength of organic matter (peat) for metal ions. Complexing effect of Cl(-) on metal ions resulted mostly in reduction of metal ability to form strongly bound metal-organic compounds, in accordance with the order of stability constant of complex ions log K: Cd>Zn>Cu. Flow-through (dynamic) contact mode, which is the most appropriate to simulate environmental conditions, appeared to strongly attenuate the complexing effect of chloride ions on Cd and Zn sorption, and significantly enhance sorption capacity also in the absence of complexing ions. For Cd, it was mainly due to the enrichment in the strongly bound "insoluble organic" fraction, while for Zn the quantitative increase of sorption capacity did not alter significantly its partitioning. Neither a quantitative nor qualitative effect of contact mode on Cu binding was observed. Complex and diverse effects of different environmental parameters on metal sorption capacity and binding strength onto organic matter, which strongly influence metal mobility, leads to the conclusion that the correct simulation of these parameters for ecotoxicological testing is crucial for the reliable predicting of metal bioavailability under actual terrestrial environmental conditions.


Subject(s)
Metals, Heavy/chemistry , Models, Theoretical , Soil Pollutants/analysis , Adsorption , Biological Availability , Organic Chemicals
14.
Sci Total Environ ; 285(1-3): 29-51, 2002 Feb 21.
Article in English | MEDLINE | ID: mdl-11874046

ABSTRACT

Legal definitions exert a significant impact on the waste management strategy. Waste that is technically suitable for recovery does not automatically become a raw material if there is no market for it, or its use is not commercially effective and, hence, they should be disposed of. The majority of disposed wastes, including recyclable waste, are not environmentally safe. Waste as a freshly generated anthropogenic material is not geochemically stable. Przezchlebie fly ash surface pond (Upper Silesia, Poland) in the post-closure stage was subject to field validation of the results of laboratory leaching/extraction tests and long-term column experiments on fly ash (FA) leaching behaviour under controlled conditions for environmental risk assessment. The study showed: (i) the possibility of a discontinuous non-linear time delayed increase of pollution potential of disused 'non-hazardous' large-volume waste in the dumping sites to the hazardous level; (ii) inconsistency of the laboratory leaching tests and the actual leaching behaviour of trace metals, particularly when equilibria conditions are dictated by kinetically determined reactions where the test results reflected entirely wash-out (I) and dissolution (II) phases, but did not comprise delayed release (III) phase; and (iii) necessity of life-cycle screening/monitoring of 'non-hazardous' dumping sites for contaminant release as a function of the primary (pH-Eh, ionic strength, ionic composition of solute) and secondary controlling factors (L/S-liquid to solid ratio, water flow conditions) along the vertical profile of an anthropogenic or natural vadose zone. These data are to be used to develop long-term predictive hydrogeochemical models and their field validation, and for providing an early warning and remedial actions with respect to the particular site. The formation of pH (and Eh) as a function of time-dependent (kinetically defined) processes appeared to be a key issue for a correct prediction of the leaching behaviour of waste. The presented case study on FA shows that waste, even those considered non-hazardous and fit for use in a commercially proven applications, should not be treated the same way as a natural raw material. To facilitate waste utilisation and disposal in environmentally safe way and to prioritise its use, reliable environmental risk assessment prediction models and testing procedures, as well as special enforcement strategy and regulations, should be developed with respect to waste and not 'materials.'


Subject(s)
Power Plants , Refuse Disposal , Terminology as Topic , Environmental Monitoring , Environmental Pollutants , Forecasting , Humans , Hydrogen-Ion Concentration , Incineration , Industrial Waste , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...