Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 11(1): 472, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724574

ABSTRACT

Open surface water across the globe is essential for many life forms and is an important source for human settlements, agriculture, and industry. The presence and variation in time and space is influenced by different natural conditions (e.g. climate, topography, geology) and human use (e.g. irrigation, flood protection). The information on the spatial and temporal distribution of open surface water is fundamental for many disciplines and is also required as an essential parameter for hydrological and climatological modelling. Here, we present a dataset derived from satellite earth observation, which is based on more than 6.3 million single MODIS products with a volume of approx. 300 TB. The resulting dataset reflects the situation of open surface water on a global scale for each day over the time period from 2003 to 2022 at a spatial resolution of 250 m. The dataset enables the analysis of the development of lake and reservoir surface areas, freezing cycles, and inundation areas.

2.
Proc Natl Acad Sci U S A ; 104(12): 4973-8, 2007 Mar 20.
Article in English | MEDLINE | ID: mdl-17360392

ABSTRACT

Losses of biodiversity and ecosystem functioning due to rainforest destruction and agricultural intensification are prime concerns for science and society alike. Potentially, ecosystems show nonlinear responses to land-use intensification that would open management options with limited ecological losses but satisfying economic gains. However, multidisciplinary studies to quantify ecological losses and socioeconomic tradeoffs under different management options are rare. Here, we evaluate opposing land use strategies in cacao agroforestry in Sulawesi, Indonesia, by using data on species richness of nine plant and animal taxa, six related ecosystem functions, and on socioeconomic drivers of agroforestry expansion. Expansion of cacao cultivation by 230% in the last two decades was triggered not only by economic market mechanisms, but also by rarely considered cultural factors. Transformation from near-primary forest to agroforestry had little effect on overall species richness, but reduced plant biomass and carbon storage by approximately 75% and species richness of forest-using species by approximately 60%. In contrast, increased land use intensity in cacao agroforestry, coupled with a reduction in shade tree cover from 80% to 40%, caused only minor quantitative changes in biodiversity and maintained high levels of ecosystem functioning while doubling farmers' net income. However, unshaded systems further increased income by approximately 40%, implying that current economic incentives and cultural preferences for new intensification practices put shaded systems at risk. We conclude that low-shade agroforestry provides the best available compromise between economic forces and ecological needs. Certification schemes for shade-grown crops may provide a market-based mechanism to slow down current intensification trends.


Subject(s)
Agriculture , Biodiversity , Forestry , Income , Trees/physiology , Tropical Climate , Animals , Cacao , Insecta , Plant Leaves/physiology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...