Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 85(9): 095114, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25273779

ABSTRACT

We describe a system to transport and identify barium ions produced in liquid xenon, as part of R&D towards the second phase of a double beta decay experiment, nEXO. The goal is to identify the Ba ion resulting from an extremely rare nuclear decay of the isotope (136)Xe, hence providing a confirmation of the occurrence of the decay. This is achieved through Resonance Ionization Spectroscopy (RIS). In the test setup described here, Ba ions can be produced in liquid xenon or vacuum and collected on a clean substrate. This substrate is then removed to an analysis chamber under vacuum, where laser-induced thermal desorption and RIS are used with time-of-flight mass spectroscopy for positive identification of the barium decay product.

2.
Rev Sci Instrum ; 82(10): 105114, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22047336

ABSTRACT

A magnetically driven piston pump for xenon gas recirculation is presented. The pump is designed to satisfy extreme purity and containment requirements, as is appropriate for the recirculation of isotopically enriched xenon through the purification system and large liquid xenon time projection chamber of EXO-200. The pump, using sprung polymer gaskets, is capable of pumping more than 16 standard liters per minute of xenon gas with 750 Torr differential pressure.

3.
Rev Sci Instrum ; 81(11): 113301, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21133463

ABSTRACT

We describe a source capable of producing single barium ions through nuclear recoils in radioactive decay. The source is fabricated by electroplating (148)Gd onto a silicon α-particle detector and vapor depositing a layer of BaF(2) over it. (144)Sm recoils from the alpha decay of (148)Gd are used to dislodge Ba(+) ions from the BaF(2) layer and emit them in the surrounding environment. The simultaneous detection of an α particle in the substrate detector allows for tagging of the nuclear decay and of the Ba(+) emission. The source is simple, durable, and can be manipulated and used in different environments. We discuss the fabrication process, which can be easily adapted to emit most other chemical species, and the performance of the source.

SELECTION OF CITATIONS
SEARCH DETAIL
...