Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Res ; 11(11): 1935-43, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11691858

ABSTRACT

Animal models have been used primarily as surrogates for humans, having similar disease-based phenotypes. Genomic organization also tends to be conserved between species, leading to the generation of comparative genome maps. The emergence of radiation hybrid (RH) maps, coupled with the large numbers of available Expressed Sequence Tags (ESTs), has revolutionized the way comparative maps can be built. We used publicly available rat, mouse, and human data to identify genes and ESTs with interspecies sequence identity (homology), identified their UniGene relationships, and incorporated their RH map positions to build integrated comparative maps with >2100 homologous UniGenes mapped in more than one species (approximately 6% of all mammalian genes). The generation of these maps is iterative and labor intensive; therefore, we developed a series of computer tools (not described here) based on our algorithm that identifies anchors between species and produces printable and on-line clickable comparative maps that link to a wide variety of useful tools and databases. The maps were constructed using sequence-based comparisons, thus creating "hooks" for further sequence-based annotation of human, mouse, and rat sequences. Currently, this map enables investigators to link the physiology of the rat with the genetics of the mouse and the clinical significance of the human.


Subject(s)
Chromosome Mapping/methods , Computational Biology/methods , Algorithms , Animals , Databases, Genetic , Expressed Sequence Tags , Humans , Mice , Radiation Hybrid Mapping/methods , Rats , Reproducibility of Results
2.
Genomics ; 69(3): 287-94, 2000 Nov 01.
Article in English | MEDLINE | ID: mdl-11056046

ABSTRACT

We report the establishment of a hybridization-based marker system for the rat genome based on the PCR amplification of interspersed repetitive sequences (IRS). Overall, 351 IRS markers were mapped within the rat genome. The IRS marker panel consists of 210 nonpolymorphic and 141 polymorphic markers that were screened for presence/absence polymorphism patterns in 38 different rat strains and substrains that are commonly used in biomedical research. The IRS marker panel was demonstrated to be useful for rapid genome screening in experimental rat crosses and high-throughput characterization of large-insert genomic library clones. Information on corresponding YAC clones is made available for this IRS marker set distributed over the whole rat genome. The two existing rat radiation hybrid maps were integrated by placing the IRS markers in both maps. The genetic and physical mapping data presented provide substantial information for ongoing positional cloning projects in the rat.


Subject(s)
Genome , Interspersed Repetitive Sequences , Rats, Inbred Strains/genetics , Animals , Cell Line , Chromosome Mapping , Chromosomes, Artificial, Yeast , Cricetinae , Genetic Markers , Polymerase Chain Reaction/methods , Rats , Rats, Inbred F344/genetics
3.
Genome Res ; 9(6): AP1-8, insert, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10400928

ABSTRACT

The laboratory rat (Rattus norvegicus) is a key animal model for biomedical research. However, the genetic infrastructure required for connecting phenotype and genotype in the rat is currently incomplete. Here, we report the construction and integration of two genomic maps: a dense genetic linkage map of the rat and the first radiation hybrid (RH) map of the rat. The genetic map was constructed in two F2 intercrosses (SHRSP x BN and FHH x ACI), containing a total of 4736 simple sequence length polymorphism (SSLP) markers. Allele sizes for 4328 of the genetic markers were characterized in 48 of the most commonly used inbred strains. The RH map is a lod >/= 3 framework map, including 983 SSLPs, thereby allowing integration with markers on various genetic maps and with markers mapped on the RH panel. Together, the maps provide an integrated reference to >3000 genes and ESTs and >8500 genetic markers (5211 of our SSLPs and >3500 SSLPs developed by other groups). [Bihoreau et al. (1997); James and Tanigami, RHdb (http:www.ebi.ac.uk/RHdb/index.html); Wilder (http://www.nih.gov/niams/scientific/ratgbase); Serikawa et al. (1992); RATMAP server (http://ratmap.gen.gu.se)] RH maps (v. 2.0) have been posted on our web sites at http://goliath.ifrc.mcw.edu/LGR/index.html or http://curatools.curagen.com/ratmap. Both web sites provide an RH mapping server where investigators can localize their own RH vectors relative to this map. The raw data have been deposited in the RHdb database. Taken together, these maps provide the basic tools for rat genomics. The RH map provides the means to rapidly localize genetic markers, genes, and ESTs within the rat genome. These maps provide the basic tools for rat genomics. They will facilitate studies of multifactorial disease and functional genomics, allow construction of physical maps, and provide a scaffold for both directed and large-scale sequencing efforts and comparative genomics in this important experimental organism.


Subject(s)
Chromosome Mapping/methods , Genetic Linkage/genetics , Rats/genetics , Alleles , Animals , Crosses, Genetic , Female , Genetic Markers , Humans , Hybrid Cells/radiation effects , Mice , Polymorphism, Genetic , Rats, Inbred ACI , Rats, Inbred BN , Rats, Inbred SHR , Terminology as Topic
4.
J Virol ; 69(3): 1785-93, 1995 Mar.
Article in English | MEDLINE | ID: mdl-7853518

ABSTRACT

An antiserum was raised against the African swine fever virus (ASFV)-encoded ubiquitin-conjugating enzyme (UBCv1) and used to demonstrate by Western blotting (immunoblotting) and immunofluorescence that the enzyme is present in purified extracellular virions, is expressed both early and late after infection of cells with ASFV, and is cytoplasmically located. Antiubiquitin serum was used to identify novel ubiquitin conjugates present during ASFV infections. This antiserum stained virus factories late after infection, suggesting that virion proteins may be ubiquitinated. This possibility was confirmed by Western blotting, which identified three major antiubiquitin-immunoreactive proteins with molecular masses of 5, 18, and 58 kDa in purified extracellular virions. The 18-kDa protein was solubilized from virions at relatively low concentrations of the detergent n-octyl-beta-D-glucopyranoside, indicating that it is externally located and is possibly in the virus capsid. The 18-kDa protein was purified, and N-terminal amino acid sequencing confirmed that the protein was ubiquitinated and was ASFV encoded. The ASFV gene encoding this protein (PIG1) was sequenced, and the encoded protein expressed in an Escherichia coli expression vector. Recombinant PIG1 was ubiquitinated in the presence of E. coli expressed UBCv1 in vitro. These results suggest that PIG1 may be a substrate for UBCv1. The predicted molecular masses of the PIG1 protein and recombinant ubiquitinated protein were larger than the 18-kDa molecular mass of the ubiquitinated protein present in virions. Therefore, during viral replication, a precursor protein may undergo limited proteolysis to generate the ubiquitinated 18-kDa protein.


Subject(s)
African Swine Fever Virus/ultrastructure , Ligases/metabolism , Ubiquitin-Conjugating Enzymes , Ubiquitins/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/ultrastructure , Amino Acid Sequence , Base Sequence , Genes, Viral , Immunohistochemistry , Molecular Sequence Data , Molecular Weight , Protein Processing, Post-Translational , Viral Proteins/chemistry , Viral Structural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...