Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10491, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714729

ABSTRACT

Dogs (Canis lupus familiaris) are the domestically bred descendant of wolves (Canis lupus). However, selective breeding has profoundly altered facial morphologies of dogs compared to their wolf ancestors. We demonstrate that these morphological differences limit the abilities of dogs to successfully produce the same affective facial expressions as wolves. We decoded facial movements of captive wolves during social interactions involving nine separate affective states. We used linear discriminant analyses to predict affective states based on combinations of facial movements. The resulting confusion matrix demonstrates that specific combinations of facial movements predict nine distinct affective states in wolves; the first assessment of this many affective facial expressions in wolves. However, comparative analyses with kennelled rescue dogs revealed reduced ability to predict affective states. Critically, there was a very low predictive power for specific affective states, with confusion occurring between negative and positive states, such as Friendly and Fear. We show that the varying facial morphologies of dogs (specifically non-wolf-like morphologies) limit their ability to produce the same range of affective facial expressions as wolves. Confusion among positive and negative states could be detrimental to human-dog interactions, although our analyses also suggest dogs likely use vocalisations to compensate for limitations in facial communication.


Subject(s)
Domestication , Emotions , Facial Expression , Wolves , Animals , Wolves/physiology , Dogs , Emotions/physiology , Male , Female , Behavior, Animal/physiology , Humans
2.
Sci Rep ; 12(1): 1114, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35064119

ABSTRACT

There is increasing evidence that personality traits may drive dispersal patterns of animals, including invasive species. We investigated, using the widespread signal crayfish Pacifastacus leniusculus as a model invasive species, whether effects of personality traits on dispersal were independent of, or affected by, other factors including population density, habitat, crayfish size, sex and limb loss, along an invasion gradient. Behavioural traits (boldness, activity, exploration, willingness to climb) of 310 individually marked signal crayfish were measured at fully-established, newly-established and invasion front sites of two upland streams. After a period at liberty, recaptured crayfish were reassessed for behavioural traits (newly-established, invasion front). Dispersal distance and direction of crayfish movement, local population density, fine-scale habitat characteristics and crayfish size, sex and limb loss were also measured. Individual crayfish exhibited consistency in behavioural traits over time which formed a behavioural syndrome. Dispersal was both positively and negatively affected by personality traits, positively by local population density and negatively by refuge availability. No effect of size, sex and limb loss was recorded. Personality played a role in promoting dispersal but population density and local habitat complexity were also important determinants. Predicting biological invasion in animals is likely to require better integration of these processes.


Subject(s)
Animal Distribution/physiology , Astacoidea/physiology , Behavior, Animal/physiology , Introduced Species , Animals , Ecosystem , England , Population Density , Rivers
3.
Oecologia ; 198(2): 531-542, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34999944

ABSTRACT

Ecosystem engineers affect other organisms by creating, maintaining or modifying habitats, potentially supporting species of conservation concern. However, it is important to consider these interactions alongside non-engineering trophic pathways. We investigated the relative importance of trophic and non-trophic effects of an ecosystem engineer, red deer, on a locally rare moth, the transparent burnet (Zygaena purpuralis). This species requires specific microhabitat conditions, including the foodplant, thyme, and bare soil for egg-laying. The relative importance of grazing (i.e., trophic effect of modifying microhabitat) and trampling (i.e., non-trophic effect of exposing bare soil) by red deer on transparent burnet abundance is unknown. We tested for these effects using a novel method of placing pheromone-baited funnel traps in the field. Imago abundance throughout the flight season was related to plant composition, diversity and structure at various scales around each trap. Indirect effects of red deer activity were accounted for by testing red deer pellet and trail presence against imago abundance. Imago abundance was positively associated with thyme and plant diversity, whilst negatively associated with velvet grass and heather species cover. The presence of red deer pellets and trails were positively associated with imago abundance. The use of these sites by red deer aids the transparent burnet population via appropriate levels of grazing and the provision of a key habitat condition, bare soil, in the form of deer trails. This study shows that understanding how both trophic and non-trophic interactions affect the abundance of a species provides valuable insights regarding conservation objectives.


Subject(s)
Deer , Moths , Animals , Ecosystem , Plants , Soil
4.
PLoS One ; 16(6): e0252013, 2021.
Article in English | MEDLINE | ID: mdl-34086713

ABSTRACT

Measures of heart rate variability (and heart rate more generally) are providing powerful insights into the physiological drivers of behaviour. Resting heart rate variability (HRV) can be used as an indicator of individual differences in temperament and reactivity to physical and psychological stress. There is increasing interest in deriving such measures from free ranging wild animals, where individuals are exposed to the natural and anthropogenic stressors of life. We describe a robust, externally mounted heart rate monitor for use in wild mammals, deployed here on wild breeding adult female grey seals (Halichoerus grypus), that delivers millisecond precise measures of inter beat intervals (IBIs), allowing computation of resting HRV parameters. Based on Firstbeat™ heart rate belts, our system allows for remote, continuous recording of IBI data from over 30 individuals simultaneously at ranges of up to 200m. We assessed the accuracy of the IBI data provided by the Firstbeat™ system using concurrent IBI data derived from in-field electrocardiogram (ECG) recordings. Bland-Altmann analyses demonstrated high correspondence between the two sets of IBI data, with a mean difference of 0.87±0.16ms. We used generalized additive mixed-effects models to examine the impact of the default Firstbeat™ software artefact correction procedure upon the generation of anomalous data (flats and stairs). Artefact correction and individual activity were major causes of flats and stairs. We used simulations and models to assess the impact of these errors on estimates of resting HRV and to inform criteria for subsampling relatively error free IBI traces. These analyses allowed us to establish stringent filtering procedures to remove traces with excessive numbers of artefacts, including flats and stairs. Even with strict criteria for removing potentially erroneous data, the abundance of data yielded by the Firstbeat™ system provides the potential to extract robust estimates of resting HRV. We discuss the advantages and limitations of our system for applications beyond the study system described here.


Subject(s)
Animals, Wild/physiology , Heart Rate/physiology , Mammals/physiology , Animals , Artifacts , Electrocardiography/methods , Female , Seals, Earless/physiology , Software , Telemetry
5.
J Anim Ecol ; 89(11): 2461-2472, 2020 11.
Article in English | MEDLINE | ID: mdl-32895978

ABSTRACT

Judicious management of energy can be invaluable for animal survival and reproductive success. Capital breeding mammals typically transfer energy to their young at extremely high rates while undergoing prolonged fasting, making lactation a tremendously energy demanding period. Effective management of the competing demands of the mother's energy needs and those of her offspring is presumably fundamental to maximizing lifetime reproductive success. How does the mother maximize her chances of successfully rearing her pup, by ensuring that both her pup and herself have sufficient energy during this 'energetic fast'? While energy management models were first discussed in the 1990s, application of this analytical technique is still very much in its infancy. Recent work suggests that a broad range of species exhibits 'energy compensation'; during periods when they expend more energy on activity, their bodies partially compensate by reducing background (basal) metabolic rate as an adaptation to limit overall energy expenditure. However, the value of energy management models in understanding animal ecology is presently unclear. We investigate whether energy management models provide insights into the breeding strategy of phocid seals. Not only do we expect lactating seals to display energy compensation because of their breeding strategy of high energy transfer while fasting, but we anticipate that mothers exhibiting a lack of energy compensation are less likely to rear offspring successfully. On the Isle of May in Scotland, we collected heart rate data as a proxy for energy expenditure in 52 known individual grey seal (Halichoerus grypus) mothers, repeatedly across 3 years of breeding. We provide evidence that grey seal mothers typically exhibit energy compensation during lactation by downregulating their background metabolic rate to limit daily energy expenditure during periods when other energy costs are relatively high. However, individuals that fail to energy compensate during the lactation period are more likely to end lactation earlier than expected. Our study is the first to demonstrate the importance of energy compensation to an animal's reproductive expenditure. Moreover, our multi-seasonal data indicate that environmental stressors may reduce the capacity of some individuals to follow the energy compensation strategy.


Subject(s)
Lactation , Seals, Earless , Animals , Energy Metabolism , Female , Reproduction , Scotland
6.
Sci Rep ; 10(1): 9550, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32533041

ABSTRACT

Stress-coping styles dictate how individuals react to stimuli and can be measured by the integrative physiological parameter of resting heart-rate variability (HRV); low resting HRV indicating proactive coping styles, while high resting HRV typifies reactive individuals. Over 5 successive breeding seasons we measured resting HRV of 57 lactating grey seals. Mothers showed consistent individual differences in resting HRV across years. We asked whether proactive and reactive mothers differed in their patterns of maternal expenditure and short-term fitness outcomes within seasons, using maternal daily mass loss rate to indicate expenditure, and pup daily mass gain to indicate within season fitness outcomes. We found no difference in average rates of maternal daily mass loss or pup daily mass gain between proactive and reactive mothers. However, reactive mothers deviated more from the sample mean for maternal daily mass and pup daily mass gain than proactive mothers. Thus, while proactive mothers exhibit average expenditure strategies with average outcomes, expenditure varies much more among reactive mothers with more variable outcomes. Overall, however, mean fitness was equal across coping styles, providing a mechanism for maintaining coping style diversity within populations. Variability in reactive mothers' expenditures and success is likely a product of their attempts to match phenotype to prevailing environmental conditions, achieved with varying degrees of success.


Subject(s)
Adaptation, Psychological/physiology , Behavior, Animal/physiology , Physical Conditioning, Animal/physiology , Reproduction/physiology , Seals, Earless/physiology , Stress, Psychological/physiopathology , Animals , Female , Health Expenditures , Individuality , Lactation/physiology , Mothers , Seasons
7.
Psychoneuroendocrinology ; 110: 104423, 2019 12.
Article in English | MEDLINE | ID: mdl-31487568

ABSTRACT

Maximising infant survival requires secure attachments and appropriate behaviours between parents and offspring. Oxytocin is vital for parent-offspring bonding and behaviour. It also modulates energetic balance and neural pathways regulating feeding. However, to date the connections between these two areas of the hormone's functionality are poorly defined. We demonstrate that grey seal (Halichoerus grypus) mothers with high oxytocin levels produce pups with high oxytocin levels throughout lactation, and show for the first time a link between endogenous infant oxytocin levels and rates of mass gain prior to weaning. High oxytocin infants gained mass at a greater rate without additional energetic cost to their mothers. Increased mass gain in infants was not due to increased nursing, and there was no link between maternal mass loss rates and plasma oxytocin concentrations. Increased mass gain rates within high oxytocin infants may be due to changes in individual behaviour and energy expenditure or oxytocin impacting on tissue formation. Infancy is a crucial time for growth and development, and our findings connect the oxytocin driven mechanisms for parent-infant bonding with the energetics underlying parental care. Our study demonstrates that oxytocin release may connect optimal parental or social environments with direct physiological advantages for individual development.


Subject(s)
Animals, Suckling , Energy Metabolism/physiology , Oxytocin/blood , Seals, Earless , Weight Gain/physiology , Animals , Animals, Suckling/blood , Animals, Suckling/growth & development , Female , Lactation/physiology , Male , Maternal Behavior/physiology , Mothers , Seals, Earless/growth & development , Seals, Earless/metabolism , Weaning
8.
Proc Biol Sci ; 284(1855)2017 May 31.
Article in English | MEDLINE | ID: mdl-28539519

ABSTRACT

The neuropeptide hormone oxytocin modulates numerous social and parental behaviours across a wide range of species, including humans. We conducted manipulation experiments on wild grey seals (Halichoerus grypus) to determine whether oxytocin increases proximity-seeking behaviour, which has previously been correlated with endogenous oxytocin concentrations in wild seal populations. Pairs of seals that had never met previously were given intravenous injections of 0.41 µg kg-1 oxytocin or saline and were observed for 1 h post-manipulation. The dose was designed to mimic endogenous oxytocin concentrations during the observation period, and is one of the lowest doses used to manipulate behaviour to date. Seals given oxytocin spent significantly more time in close proximity to each other, confirming that oxytocin causes conspecifics to seek others out and remain close to one another. Aggressive and investigative behaviours also significantly fell after oxytocin manipulations. Despite using a minimal oxytocin dose, pro-social behavioural changes unexpectedly persisted for 2 days despite rapid dose clearance from circulation post-injection. This study verifies that oxytocin promotes individuals staying together, demonstrating how the hormone can form positive feedback loops of oxytocin release following conspecific stimuli, increased motivation to remain in close proximity and additional oxytocin release from stimuli received while in close proximity.


Subject(s)
Behavior, Animal , Oxytocin/physiology , Seals, Earless/physiology , Social Behavior , Aggression , Animals
9.
PLoS One ; 10(12): e0144577, 2015.
Article in English | MEDLINE | ID: mdl-26698856

ABSTRACT

Maternal behaviour is a crucial component of reproduction in all mammals; however the quality of care that mothers give to infants can vary greatly. It is vital to document variation in maternal behaviour caused by the physiological processes controlling its expression. This underlying physiology should be conserved throughout reproductive events and should be replicated across all individuals of a species; therefore, any correlates to maternal care quality may be present across many individuals or contexts. Oxytocin modulates the initiation and expression of maternal behaviour in mammals; therefore we tested whether maternal plasma oxytocin concentrations correlated to key maternal behaviours in wild grey seals (Halichoerus grypus). Plasma oxytocin concentrations in non-breeding individuals (4.3 ± 0.5 pg/ml) were significantly lower than those in mothers with dependent pups in both early (8.2 ± 0.8 pg/ml) and late (6.9 ± 0.7 pg/ml) lactation. Maternal plasma oxytocin concentrations were not correlated to the amount of nursing prior to sampling, or a mother's nursing intensity throughout the dependent period. Mothers with high plasma oxytocin concentrations stayed closer to their pups, reducing the likelihood of mother-pup separation during lactation which is credited with causing starvation, the largest cause of pup mortality in grey seals. This is the first study to link endogenous oxytocin concentrations in wild mammalian mothers with any type of maternal behaviour. Oxytocin's structure and function is widely conserved across mammalian mothers, including humans. Defining the impact the oxytocin system has on maternal behaviour highlights relationships that may occur across many individuals or species, and such behaviours heavily influence infant development and an individual's lifetime reproductive success.


Subject(s)
Behavior, Animal , Maternal Behavior , Mother-Child Relations/psychology , Mothers/psychology , Oxytocin/blood , Seals, Earless/psychology , Animals , Female , Lactation , Reproduction
10.
Behav Ecol Sociobiol ; 69(8): 1383-1394, 2015.
Article in English | MEDLINE | ID: mdl-26246656

ABSTRACT

Recognising conspecifics and behaving appropriately towards them is a crucial ability for many species. Grey seals (Halichoerus grypus) show varying capabilities in this regard: mother-pup recognition has been demonstrated in some geographical populations but is absent in others, yet there is evidence that individuals aggregate with prior associates. The recognition capabilities of newly weaned grey seal pups were investigated using class recognition trials within the habituation/dishabituation paradigm. Trials took place in pens, using pairs of individuals that either had previously cohabited (familiar) or that had never met before (stranger). Frequencies of olfactory and visual investigative behaviours ('checks') and aggressive interactions were recorded during trials. Familiar individuals recognised each other: paired strangers showed significantly more checks and aggressive interactions than were seen in trials pairing familiars. Oxytocin concentrations in post-trial plasma samples were analysed to investigate the underlying physiology modulating recognition abilities; however, no significant differences were detected between familiar or stranger trials. This study demonstrates that at a young age, grey seals can recognise individuals they have previously encountered. Recognition abilities in this species have adaptive value by allowing the reduction of costly aggressive interactions between familiar conspecifics, which is often cited as the first step towards the evolution of sociality in a species. This study is the first with wild subjects to find conspecific recognition abilities in a pinniped species outside of reproductive contexts. It demonstrates that even largely solitary species can be capable of recognition and pro-social behaviours that benefit them during times when they must aggregate.

11.
PLoS One ; 7(11): e49598, 2012.
Article in English | MEDLINE | ID: mdl-23166723

ABSTRACT

Consistent individual differences (CIDs) in behaviour, indicative of behavioural types or personalities, have been shown in taxa ranging from Cnidaria to Mammalia. However, despite numerous theoretical explanations there remains limited empirical evidence for selective mechanisms that maintain such variation within natural populations. We examined behavioural types and fitness proxies in wild female grey seals at the North Rona breeding colony. Experiments in 2009 and 2010 employed a remotely-controlled vehicle to deliver a novel auditory stimulus to females to elicit changes in pup-checking behaviour. Mothers tested twice during lactation exhibited highly repeatable individual pup-checking rates within and across breeding seasons. Observations of undisturbed mothers (i.e. experiencing no disturbance from conspecifics or experimental test) also revealed CIDs in pup-checking behaviour. However, there was no correlation between an individuals' pup-checking rate during undisturbed observations with the rate in response to the auditory test, indicating plasticity across situations. The extent to which individuals changed rates of pup-checking from undisturbed to disturbed conditions revealed a continuum of behavioural types from proactive females, who maintained a similar rate throughout, to reactive females, who increased pup-checking markedly in response to the test. Variation in maternal expenditure (daily mass loss rate) was greater among more reactive mothers than proactive mothers. Consequently pups of more reactive mothers had more varied growth rates centred around the long-term population mean. These patterns could not be accounted for by other measured covariates as behavioural type was unrelated to a mother's prior experience, degree of inter-annual site fidelity, physical characteristics of their pupping habitat, pup sex or pup activity. These findings are consistent with the hypothesis that variation in behavioural types is maintained by spatial and temporal environmental variation combined with limits to phenotype-environment matching.


Subject(s)
Behavior, Animal , Reproduction , Seals, Earless/physiology , Animals , Ecosystem , Environment , Female
12.
Biol Lett ; 3(1): 12-5, 2007 Feb 22.
Article in English | MEDLINE | ID: mdl-17443953

ABSTRACT

Many studies have demonstrated influences of climatic variation on a variety of ecological processes, however, its impact on the potent evolutionary force of sexual selection has largely been ignored. The intensity of sexual selection is a fundamental parameter in animal populations, which depends upon the degree of polygamy and will probably be influenced by the impact of local climatic variation upon 'environmental potential for polygamy'. Here, we provide evidence of a direct effect of local climatic variation on the intensity of sexual selection, by showing a clear correlation between local weather conditions and inter-annual changes in the degree of polygamy in a long-term study of colonially breeding grey seals (Halichoerus grypus). Our results show that changes in local weather conditions alter the annual proportion of males contributing to the effective population size (Ne) by up to 61%. Consequently, over the 'lifetime' of a cohort, a broader range of individuals will contribute genetically to the next generation if local weather conditions are variable. In the context of predicted future changes in climatic variation, these findings have broad implications for population genetics of socially structured animal systems through the major influence that the degree of polygamy has upon Ne.


Subject(s)
Rain , Seals, Earless/physiology , Selection, Genetic , Sexual Behavior, Animal , Animals , Climate , Ecosystem , Female , Male , Scotland , Seals, Earless/psychology
13.
Mol Ecol ; 15(7): 1939-53, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16689909

ABSTRACT

Molecular studies of pinniped breeding systems exhibit a broad range of agreement and disagreement with observational indices of male breeding success. Grey seal studies have reported considerable discrepancies between genetic and behavioural paternity measures that have been interpreted as evidence of previously unidentified male strategies and/or tactics. Therefore, these studies have the power to fundamentally alter our perceptions of mating systems. However, other pinniped studies exhibit no such disagreements, and one possible explanation for disparities may be sampling biases in space and time. Therefore, it is essential that potential sampling biases are examined to evaluate the likelihood of previously unidentified male strategies. We examined paternities assigned at the North Rona grey seal colony between 1999 and 2002 in relation to concurrent detailed behavioural and locational data for males and females. We found that (i) for females observed in sexual interaction(s) during their oestrus period, it was highly probable that one of the interacting males fathered their next pup; (ii) over 80% of assigned paternities agreed with observations of the in-colony behaviour and spatio-temporal proximity of the males and females involved; and (iii) a minority of females exhibit mate choice and seek sires outside their local male's home range, although evidence suggests that these females mate on the colony rather than at sea. In conclusion, nearly all paternities assigned agreed with expectation based upon detailed knowledge of the spatio-temporal patterns of individuals during the breeding season. We found little evidence of unidentified male strategies at North Rona, Scotland, whereas further examination of mechanisms of female choice may be productive.


Subject(s)
Seals, Earless/genetics , Sexual Behavior, Animal , Animals , Competitive Behavior , Ecosystem , Environment , Estrus , Female , Genotype , Geography , Male , Microsatellite Repeats , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...