Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Res Biotechnol ; 2: 16-21, 2020 Nov.
Article in English | MEDLINE | ID: mdl-34222856

ABSTRACT

Osteoarthritis is a debilitating disease that results in pain and joint stiffness. Currently, steroidal and nonsteroidal anti-inflammatory drugs and supplements aimed at restoring lubrication to the affected joint are the most successful with respect to improving patient comfort. Due to the success in lubricating therapies, there exists a keen interest to develop better therapies that mimic how lubrication occurs naturally in the joint. Here we describe the results obtained using a chondroitin sulfate chain to which is conjugated peptides that bind to either hyaluronic acid (found in high concentrations in the synovial fluid) or collagen type II (present on the cartilage surface). Our study investigates the effect of binding to the cartilage surface and interacting with hyaluronic acid on lubrication at the cartilage surface. The results described here suggest that binding to the cartilage surface is critical to supporting lubrication and did not require the addition of hyaluronic acid to reduce friction.

2.
Adv Funct Mater ; 26(16): 2617-2628, 2016 Apr 25.
Article in English | MEDLINE | ID: mdl-27346992

ABSTRACT

Biological tissues and biomaterials are often defined by unique spatial gradients in physical properties that impart specialized function over hierarchical scales. The structure and organization of these materials forms continuous transitional gradients and discrete local microenvironments between adjacent (or within) tissues, and across matrix-cell boundaries, which can be difficult to replicate with common scaffold systems. Here, we studied the matrix densification of collagen leading to gradients in density, mechanical properties, and fibril morphology. High-density regions formed via a fluid pore pressure and flow-driven mechanism, with increased relative fibril density (10×), mechanical properties (20×, to 94.40±18.74kPa), and maximum fibril thickness (1.9×, to >1µm) compared to low-density regions, while maintaining porosity and fluid/mass transport to support viability of encapsulated cells. Similar to the organization of the articular cartilage zonal structure, we found that high-density collagen regions induced cell and nuclear alignment of primary chondrocytes. Chondrocyte gene expression was maintained in collagen matrices, and no phenotypic changes were observed as a result of densification. Densification of collagen matrices provides a unique, tunable platform for the creation of gradient systems to study complex cell-matrix interactions. These methods are easily generalized to compression and boundary condition modalities useful to mimic a broad range of tissues.

3.
Adv Funct Mater ; 26(30): 5427-5436, 2016 Aug 09.
Article in English | MEDLINE | ID: mdl-28824356

ABSTRACT

Decellularized cartilage microparticles, and all associated native signals, are delivered to hMSC populations in a dense, type I collagen matrix. Hybrid usage of native tissue signals and the engineering control of collagen matrices show the ability to induce local infiltration and differentiation of hMSCs. Additionally, the solid cartilage microparticles inhibit bulk cell-mediated contraction of the composite.

SELECTION OF CITATIONS
SEARCH DETAIL
...