Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Theranostics ; 14(9): 3693-3707, 2024.
Article in English | MEDLINE | ID: mdl-38948062

ABSTRACT

Background: Immune checkpoint inhibitors (ICI) are routinely used in advanced clear cell renal cell carcinoma (ccRCC). However, a substantial group of patients does not respond to ICI therapy. Radiation is a promising approach to increase ICI response rates since it can generate anti-tumor immunity. Targeted radionuclide therapy (TRT) is a systemic radiation treatment, ideally suited for precision irradiation of metastasized cancer. Therefore, the aim of this study is to explore the potential of combined TRT, targeting carbonic anhydrase IX (CAIX) which is overexpressed in ccRCC, using [177Lu]Lu-DOTA-hG250, and ICI for the treatment of ccRCC. Methods: In this study, we evaluated the therapeutic and immunological action of [177Lu]Lu-DOTA-hG250 combined with aPD-1/a-CTLA-4 ICI. First, the biodistribution of [177Lu]Lu-DOTA-hG250 was investigated in BALB/cAnNRj mice bearing Renca-CAIX or CT26-CAIX tumors. Renca-CAIX and CT26-CAIX tumors are characterized by poor versus extensive T-cell infiltration and homogeneous versus heterogeneous PD-L1 expression, respectively. Tumor-absorbed radiation doses were estimated through dosimetry. Subsequently, [177Lu]Lu-DOTA-hG250 TRT efficacy with and without ICI was evaluated by monitoring tumor growth and survival. Therapy-induced changes in the tumor microenvironment were studied by collection of tumor tissue before and 5 or 8 days after treatment and analyzed by immunohistochemistry, flow cytometry, and RNA profiling. Results: Biodistribution studies showed high tumor uptake of [177Lu]Lu-DOTA-hG250 in both tumor models. Dose escalation therapy studies in Renca-CAIX tumor-bearing mice demonstrated dose-dependent anti-tumor efficacy of [177Lu]Lu-DOTA-hG250 and remarkable therapeutic synergy including complete remissions when a presumed subtherapeutic TRT dose (4 MBq, which had no significant efficacy as monotherapy) was combined with aPD-1+aCTLA-4. Similar results were obtained in the CT26-CAIX model for 4 MBq [177Lu]Lu-DOTA-hG250 + a-PD1. Ex vivo analyses of treated tumors revealed DNA damage, T-cell infiltration, and modulated immune signaling pathways in the TME after combination treatment. Conclusions: Subtherapeutic [177Lu]Lu-DOTA-hG250 combined with ICI showed superior therapeutic outcome and significantly altered the TME. Our results underline the importance of investigating this combination treatment for patients with advanced ccRCC in a clinical setting. Further investigations should focus on how the combination therapy should be optimally applied in the future.


Subject(s)
Carbonic Anhydrase IX , Carcinoma, Renal Cell , Immune Checkpoint Inhibitors , Kidney Neoplasms , Animals , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/therapy , Carcinoma, Renal Cell/pathology , Mice , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Kidney Neoplasms/therapy , Kidney Neoplasms/radiotherapy , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase IX/antagonists & inhibitors , Humans , Cell Line, Tumor , Radioisotopes/therapeutic use , Radioisotopes/pharmacology , Radioisotopes/administration & dosage , Lutetium/therapeutic use , Female , Antigens, Neoplasm/metabolism , Tissue Distribution , Tumor Microenvironment/drug effects , Tumor Protein, Translationally-Controlled 1 , Xenograft Model Antitumor Assays , Combined Modality Therapy/methods , Mice, Inbred BALB C , Antibodies, Monoclonal
2.
Nat Rev Cancer ; 18(8): 526, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29728690

ABSTRACT

In the online html version of this article, the affiliations for Jessica L. Pettigrew and John C. Bell were not correct. Jessica L. Pettigrew is at the Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada and John C. Bell is at the Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. This is correct in the print and PDF versions of the article and has been corrected in the html version.

3.
Nat Rev Cancer ; 18(7): 419-432, 2018 07.
Article in English | MEDLINE | ID: mdl-29695749

ABSTRACT

To effectively build on the recent successes of immune checkpoint blockade, adoptive T cell therapy and cancer vaccines, it is critical to rationally design combination strategies that will increase and extend efficacy to a larger proportion of patients. For example, the combination of anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and anti-programmed cell death protein 1 (PD1) immune checkpoint inhibitors essentially doubles the response rate in certain patients with metastatic melanoma. However, given the heterogeneity of cancer, it seems likely that even more complex combinations of immunomodulatory agents may be required to obtain consistent, durable therapeutic responses against a broad spectrum of cancers. This carries serious implications in terms of toxicities for patients, feasibility for care providers and costs for health-care systems. A compelling solution is offered by oncolytic viruses (OVs), which can be engineered to selectively replicate within and destroy tumour tissue while simultaneously augmenting antitumour immunity. In this Opinion article, we argue that the future of immunotherapy will include OVs that function as multiplexed immune-modulating platforms expressing factors such as immune checkpoint inhibitors, tumour antigens, cytokines and T cell engagers. We illustrate this concept by following the trials and tribulations of tumour-reactive T cells from their initial priming through to the execution of cytotoxic effector function in the tumour bed. We highlight the myriad opportunities for OVs to help overcome critical barriers in the T cell journey, leading to new synergistic mechanisms in the battle against cancer.


Subject(s)
Adoptive Transfer/methods , Neoplasms/therapy , Oncolytic Virotherapy/methods , CTLA-4 Antigen/antagonists & inhibitors , Cancer Vaccines/therapeutic use , Combined Modality Therapy , Humans , Immunotherapy/methods , Oncolytic Viruses , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes/transplantation , T-Lymphocytes, Cytotoxic
4.
Cell Signal ; 30: 1-8, 2017 01.
Article in English | MEDLINE | ID: mdl-27864060

ABSTRACT

JNK proteins are conserved stress-activated MAP kinases. In C. elegans, the JNK-homolog KGB-1 plays essential roles in protection from heavy metals and protein folding stress. However, the contributions of KGB-1 are age-dependent, providing protection in larvae, but reducing stress resistance and shortening lifespan in adults. Attenuation of DAF-16 was linked to the detrimental contributions of KGB-1 in adults, but its involvement in KGB-1-dependent protection in larvae remains unclear. To characterize age-dependent contributions of KGB-1, we used microarray analysis to measure gene expression following KGB-1 activation either in developing larvae or in adults, achieved by knocking down its negative phosphatase regulator vhp-1. This revealed a robust KGB-1 regulon, most of which consisting of genes induced following KGB-1 activation regardless of age; a smaller number of genes was regulated in an age-dependent manner. We found that the bZIP transcription factor FOS-1 was essential for age-invariant KGB-1-dependent gene induction, but not for age-dependent expression. The latter was more affected by DAF-16, which was further found to be required for KGB-1-dependent cadmium resistance in larvae. Our results identify FOS-1 as a transcriptional activator mediating age-invariant contributions of KGB-1, including a regulatory loop of KGB-1 signaling, but also stress the importance of DAF-16 as a mediator of age-dependent contributions.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Sequence Homology, Amino Acid , Trans-Activators/metabolism , Aging/genetics , Animals , Cadmium/toxicity , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Gene Expression Regulation/drug effects , Gene Ontology , Molecular Sequence Annotation , Regulon/genetics , Signal Transduction/drug effects
5.
PLoS One ; 11(5): e0155189, 2016.
Article in English | MEDLINE | ID: mdl-27192170

ABSTRACT

Due to advances in sequencing technology, somatically mutated cancer antigens, or neoantigens, are now readily identifiable and have become compelling targets for immunotherapy. In particular, neoantigen-targeted vaccines have shown promise in several pre-clinical and clinical studies. However, to date, neoantigen-targeted vaccine studies have involved tumors with exceptionally high mutation burdens. It remains unclear whether neoantigen-targeted vaccines will be broadly applicable to cancers with intermediate to low mutation burdens, such as ovarian cancer. To address this, we assessed whether a derivative of the murine ovarian tumor model ID8 could be targeted with neoantigen vaccines. We performed whole exome and transcriptome sequencing on ID8-G7 cells. We identified 92 somatic mutations, 39 of which were transcribed, missense mutations. For the 17 top predicted MHC class I binding mutations, we immunized mice subcutaneously with synthetic long peptide vaccines encoding the relevant mutation. Seven of 17 vaccines induced robust mutation-specific CD4 and/or CD8 T cell responses. However, none of the vaccines prolonged survival of tumor-bearing mice in either the prophylactic or therapeutic setting. Moreover, none of the neoantigen-specific T cell lines recognized ID8-G7 tumor cells in vitro, indicating that the corresponding mutations did not give rise to bonafide MHC-presented epitopes. Additionally, bioinformatic analysis of The Cancer Genome Atlas data revealed that only 12% (26/220) of HGSC cases had a ≥90% likelihood of harboring at least one authentic, naturally processed and presented neoantigen versus 51% (80/158) of lung cancers. Our findings highlight the limitations of applying neoantigen-targeted vaccines to tumor types with intermediate/low mutation burdens.


Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines/therapeutic use , Mutation , Ovarian Neoplasms/genetics , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Cell Line, Tumor , Epitopes/genetics , Epitopes/immunology , Female , Immunotherapy , Major Histocompatibility Complex , Mice , Mice, Inbred C57BL , Mutation Accumulation , Ovarian Neoplasms/immunology , Ovarian Neoplasms/therapy
6.
Mol Ther Oncolytics ; 3: 16001, 2016.
Article in English | MEDLINE | ID: mdl-27119116

ABSTRACT

Oncolytic viruses are known to stimulate the antitumor immune response by specifically replicating in tumor cells. This is believed to be an important aspect of the durable responses observed in some patients and the field is rapidly moving toward immunotherapy. As a further means to engage the immune system, we engineered a virus, vesicular stomatitis virus (VSV), to encode the proinflammatory cytokine interferon-γ. We used the 4T1 mammary adenocarcinoma as well as other murine tumor models to characterize immune responses in tumor-bearing animals generated by treatment with our viruses. The interferon-γ-encoding virus demonstrated greater activation of dendritic cells and drove a more profound secretion of proinflammatory cytokines compared to the parental virus. From a therapeutic point of view, the interferon-γ virus slowed tumor growth, minimized lung tumors, and prolonged survival in several murine tumor models. The improved efficacy was lost in immunocompromized animals; hence the mechanism appears to be T-cell-mediated. Taken together, these results demonstrate the ability of oncolytic viruses to act as immune stimulators to drive antitumor immunity as well as their potential for targeted gene therapy.

7.
PLoS Genet ; 11(5): e1005265, 2015 May.
Article in English | MEDLINE | ID: mdl-26016853

ABSTRACT

GATA transcription factors play critical roles in cellular differentiation and development. However, their roles in mature tissues are less understood. In C. elegans larvae, the transcription factor ELT-2 regulates terminal differentiation of the intestine. It is also expressed in the adult intestine, where it was suggested to maintain intestinal structure and function, and where it was additionally shown to contribute to infection resistance. To study the function of elt-2 in adults we characterized elt-2-dependent gene expression following its knock-down specifically in adults. Microarray analysis identified two ELT-2-regulated gene subsets: one, enriched for hydrolytic enzymes, pointed at regulation of constitutive digestive functions as a dominant role of adult elt-2; the second was enriched for immune genes that are induced in response to Pseudomonas aeruginosa infection. Focusing on the latter, we used genetic analyses coupled to survival assays and quantitative RT-PCR to interrogate the mechanism(s) through which elt-2 contributes to immunity. We show that elt-2 controls p38-dependent gene induction, cooperating with two p38-activated transcription factors, ATF-7 and SKN-1. This demonstrates a mechanism through which the constitutively nuclear elt-2 can impact induced responses, and play a dominant role in C. elegans immunity.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/immunology , GATA Transcription Factors/metabolism , Gene Expression Regulation , Immunity, Innate/genetics , Intestinal Mucosa/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Activating Transcription Factors/genetics , Activating Transcription Factors/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , GATA Transcription Factors/genetics , Gene Knockdown Techniques , Larva/genetics , Larva/metabolism , Promoter Regions, Genetic , Pseudomonas aeruginosa , Transcription Factors/genetics , Transcription Factors/metabolism , p38 Mitogen-Activated Protein Kinases/genetics
8.
J Vis Exp ; (85)2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24686453

ABSTRACT

The wormsorter is an instrument analogous to a FACS machine that is used in studies of Caenorhabditis elegans, typically to sort worms based on expression of a fluorescent reporter. Here, we highlight an alternative usage of this instrument, for sorting worms according to their degree of colonization by a GFP-expressing pathogen. This new usage allowed us to address the relationship between colonization of the worm intestine and induction of immune responses. While C. elegans immune responses to different pathogens have been documented, it is still unknown what initiates them. The two main possibilities (which are not mutually exclusive) are recognition of pathogen-associated molecular patterns, and detection of damage caused by infection. To differentiate between the two possibilities, exposure to the pathogen must be dissociated from the damage it causes. The wormsorter enabled separation of worms that were extensively-colonized by the Gram-negative pathogen Pseudomonas aeruginosa, with the damage likely caused by pathogen load, from worms that were similarly exposed, but not, or marginally, colonized. These distinct populations were used to assess the relationship between pathogen load and the induction of transcriptional immune responses. The results suggest that the two are dissociated, supporting the possibility of pathogen recognition.


Subject(s)
Caenorhabditis elegans/isolation & purification , Caenorhabditis elegans/microbiology , Animals , Caenorhabditis elegans/immunology , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/biosynthesis , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/metabolism
9.
Clin Cancer Res ; 20(5): 1125-34, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24323902

ABSTRACT

PURPOSE: Cancers accumulate mutations over time, each of which brings the potential for recognition by the immune system. We evaluated T-cell recognition of the tumor mutanome in patients with ovarian cancer undergoing standard treatment. EXPERIMENTAL DESIGN: Tumor-associated T cells from 3 patients with ovarian cancer were assessed by ELISPOT for recognition of nonsynonymous mutations identified by whole exome sequencing of autologous tumor. The relative levels of mutations and responding T cells were monitored in serial tumor samples collected at primary surgery and first and second recurrence. RESULTS: The vast majority of mutations (78/79) were not recognized by tumor-associated T cells; however, a highly specific CD8(+) T-cell response to the mutation hydroxysteroid dehydrogenase-like protein 1 (HSDL1)(L25V) was detected in one patient. In the primary tumor, the HSDL1(L25V) mutation had low prevalence and expression, and a corresponding T-cell response was undetectable. At first recurrence, there was a striking increase in the abundance of the mutation and corresponding MHC class I epitope, and this was accompanied by the emergence of the HSDL1(L25V)-specific CD8(+) T-cell response. At second recurrence, the HSDL1(L25V) mutation and epitope continued to be expressed; however, the corresponding T-cell response was no longer detectable. CONCLUSION: The immune system can respond to the evolving ovarian cancer genome. However, the T-cell response detected here was rare, was transient, and ultimately failed to prevent disease progression. These findings reveal the limitations of spontaneous tumor immunity in the setting of standard treatments and suggest a high degree of ignorance of tumor mutations that could potentially be reversed by immunotherapy.


Subject(s)
Immunologic Surveillance , Mutation , Ovarian Neoplasms/genetics , Ovarian Neoplasms/immunology , T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Disease Progression , Epitopes, T-Lymphocyte/immunology , Female , HLA Antigens/immunology , Humans , Hydroxysteroid Dehydrogenases/genetics , Immunohistochemistry , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasm Grading , Ovarian Neoplasms/pathology , Recurrence
10.
Aging Cell ; 11(4): 659-67, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22554143

ABSTRACT

Stress-activated protein kinase (SAPK) pathways are evolutionarily conserved signaling modules that orchestrate protective responses to adverse environmental conditions. However, under certain conditions, their activation can be deleterious. Thus, activation of the c-Jun N-terminal kinase (JNK) SAPK pathway exacerbates a diverse set of pathologies, many of which are typical of old age. The contexts determining whether the outcome of JNK signaling is protective or detrimental are not fully understood. Here, we show that the age of an animal defines such a context. The Caenorhabditis elegans JNK homolog, KGB-1, provides protection from heavy metals and protein folding stress in developing animals. However, we found that with the onset of adulthood, KGB-1 activity becomes detrimental, reducing stress resistance and lifespan. Genetic analyses coupled with fluorescent imaging linked this phenotypic switch to age-dependent antagonistic modulation of DAF-16/FOXO: KGB-1 activation enhanced DAF-16 nuclear localization and transcriptional activity during development but decreased it in adults. Epistasis analyses showed that DAF-16 was necessary and sufficient to explain some of the kgb-1-dependent detrimental phenotypes, but not all. The identification of early adulthood as a point following which the contribution of KGB-1 activity reverses from beneficial to detrimental sheds new light on the involvement of JNK signaling in age-related pathologies. Furthermore, the age-dependent reversal has intriguing implications for our understanding of aging.


Subject(s)
Aging/physiology , Caenorhabditis elegans/physiology , MAP Kinase Signaling System/physiology , Aging/genetics , Animals , Animals, Genetically Modified , Cadmium/toxicity , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/antagonists & inhibitors , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/physiology , Drug Resistance/genetics , Drug Resistance/physiology , Dual-Specificity Phosphatases/antagonists & inhibitors , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/physiology , Forkhead Transcription Factors , Gene Knockdown Techniques , Genes, Helminth , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/physiology , Longevity/genetics , Longevity/physiology , MAP Kinase Signaling System/genetics , Mutation , Phenotype , RNA Interference , Stress, Physiological , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription Factors/physiology
11.
PLoS One ; 7(4): e35400, 2012.
Article in English | MEDLINE | ID: mdl-22514739

ABSTRACT

Caenorhabditis elegans has been used for over a decade to characterize signaling cascades controlling innate immune responses. However, what initiates these responses in the worm has remained elusive. To gain a better understanding of the initiating events we delineated genome-wide immune responses to the bacterial pathogen Pseudomonas aeruginosa in worms heavily-colonized by the pathogen versus worms visibly not colonized. We found that infection responses in both groups were identical, suggesting that immune responses were not correlated with colonization and its associated damage. Quantitative RT-PCR measurements further showed that pathogen secreted factors were not able to induce an immune response, but exposure to a non-pathogenic Pseudomonas species was. These findings raise the possibility that the C.elegans immune response is initiated by recognition of microbe-associated molecular patterns. In the absence of orthologs of known pattern recognition receptors, C. elegans may rely on novel mechanisms, thus holding the potential to advance our understanding of evolutionarily conserved strategies for pathogen recognition.


Subject(s)
Caenorhabditis elegans/microbiology , Pseudomonas aeruginosa/pathogenicity , Animals , Gene Expression Profiling , Immunity, Innate/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics
12.
Eukaryot Cell ; 8(1): 104-15, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19028996

ABSTRACT

Conidiation (asexual sporulation) is a key developmental process in filamentous fungi. We examined the gene regulatory roles of the Aspergillus fumigatus developmental transcription factors StuAp and BrlAp during conidiation. Conidiation was completely abrogated in an A. fumigatus DeltabrlA mutant and was severely impaired in a DeltastuA mutant. We determined the full genome conidiation transcriptomes of wild-type and DeltabrlA and DeltastuA mutant A. fumigatus and found that BrlAp and StuAp governed overlapping but distinct transcriptional programs. Six secondary metabolite biosynthetic clusters were found to be regulated by StuAp, while only one cluster exhibited BrlAp-dependent expression. The DeltabrlA mutant, but not the DeltastuA mutant, had impaired downregulation of genes encoding ribosomal proteins under nitrogen-limiting, but not carbon-limiting, conditions. Interestingly, inhibition of the target of rapamycin (TOR) pathway also caused downregulation of ribosomal protein genes in both the wild-type strain and the DeltabrlA mutant. Downregulation of these genes by TOR inhibition was associated with conidiation in the wild-type strain but not in the DeltabrlA mutant. Therefore, BrlAp-mediated repression of ribosomal protein gene expression is not downstream of the TOR pathway. Furthermore, inhibition of ribosomal protein gene expression is not sufficient to induce conidiation in the absence of BrlAp.


Subject(s)
Aspergillus fumigatus/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Developmental , Nitrogen/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Aspergillus fumigatus/cytology , Aspergillus fumigatus/growth & development , Aspergillus fumigatus/metabolism , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Mutation , Oligonucleotide Array Sequence Analysis , Ribosomes/genetics , Ribosomes/metabolism , Signal Transduction , Spores, Fungal/genetics , Spores, Fungal/growth & development , Spores, Fungal/metabolism , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...