Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 12(6): 3535-3559, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32003390

ABSTRACT

Monitoring harmful and toxic chemicals, gases, microorganisms, and radiation has been a challenge to the scientific community for the betterment of human health and environment. Two-dimensional (2D)-material-based sensors are highly efficient and compatible with modern fabrication technology, which yield data that can be proficiently used for health and environmental monitoring. Graphene and its oxides, black phosphorus (BP), transition metal dichalcogenides (TMDCs), metal oxides, and other 2D nanomaterials have demonstrated properties that have been alluring for the manufacture of highly sensitive sensors due to their unique material properties arising from their inherent structures. This review summarizes the properties of 2D nanomaterials that can provide a platform to develop high-performance sensors. In this review, we have also discussed the advances made in the field of infrared photodetectors and electrochemical sensors and how the structural properties of 2D nanomaterials affect sensitivity and performance. Further, this review highlights 2D-nanomaterial-based electrochemical sensors that can be used to check for contaminations from heavy metals, organic/inorganic compounds, poisonous gases, pesticides, bacteria, antibiotics, etc., in water or air, which are severe risks to human wellbeing as well as the environment. Moreover, the limitations, future prospects, and challenges for the development of sensors based on 2D materials are also discussed for future advancements.


Subject(s)
Environmental Monitoring , Nanostructures , Nanotechnology , Animals , Equipment Design , Graphite , Humans , Oxides
2.
Chem Asian J ; 13(11): 1424-1431, 2018 Jun 04.
Article in English | MEDLINE | ID: mdl-29630773

ABSTRACT

Catalytic dehydrogenation of hydrazine was achieved over iminopyridine ligated ruthenium-arene complexes, where the release of H2 gas, as confirmed by GC-TCD, from hydrazine depends on reaction temperature, base, and solvents. NMR and MS studies indicated an in situ generation of a hydrazine-coordinated ruthenium species, a key intermediate of hydrazine dehydrogenation, via a coordination-assisted activation pathway.

3.
Chem Asian J ; 11(21): 3022-3031, 2016 Nov 07.
Article in English | MEDLINE | ID: mdl-27549021

ABSTRACT

Water-soluble arene-ruthenium complexes coordinated with readily available aniline-based ligands were successfully employed as highly active catalysts in the C-H bond activation and arylation of 2-phenylpyridine with aryl halides in water. A variety of (hetero)aryl halides were also used for the ortho-C-H bond arylation of 2-phenylpyridine to afford the corresponding ortho- monoarylated products as major products in moderate to good yields. Our investigations, including time-scaled NMR spectroscopy and mass spectrometry studies, evidenced that the coordinating aniline-based ligands, having varying electronic and steric properties, had a significant influence on the catalytic activity of the resulting arene-ruthenium-aniline-based complexes. Moreover, mass spectrometry identification of the cycloruthenated species, {(η6 -arene)Ru(κ2 -C,N-phenylpyridine)}+ , and several ligand-coordinated cycloruthenated species, such as [(η6 -arene)Ru(4-methylaniline)(κ2 -C,N-phenylpyridine)]+ , found during the reaction of 2-phenylpyridine with the arene-ruthenium-aniline complexes further authenticated the crucial roles of these species in the observed highly active and tuned catalyst. At last, the structures of a few of the active catalysts were also confirmed by single-crystal X-ray diffraction studies.

4.
Inorg Chem ; 55(12): 6332-43, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27276384

ABSTRACT

Molecular catalysts based on water-soluble arene-Ru(II) complexes ([Ru]-1-[Ru]-5) containing aniline (L1), 2-methylaniline (L2), 2,6-dimethylaniline (L3), 4-methylaniline (L4), and 4-chloroaniline (L5) were designed for the homocoupling of arylboronic acids in water. These complexes were fully characterized by (1)H, (13)C NMR, mass spectrometry, and elemental analyses. Structural geometry for two of the representative arene-Ru(II) complexes [Ru]-3 and [Ru]-4 was established by single-crystal X-ray diffraction studies. Our studies showed that the selectivity toward biaryls products is influenced by the position and the electronic behavior of various substituents of aniline ligand coordinated to ruthenium. Extensive investigations using (1)H NMR, (19)F NMR, and mass spectral studies provided insights into the mechanistic pathway of homocoupling of arylboronic acids, where the identification of important organometallic intermediates, such as σ-aryl/di(σ-aryl) coordinated arene-Ru(II) species, suggested that the reaction proceeds through the formation of crucial di(σ-aryl)-Ru intermediates by the interaction of arylboronic acid with Ru-catalyst to yield biaryl products.

5.
Inorg Chem ; 55(13): 6739-49, 2016 Jul 05.
Article in English | MEDLINE | ID: mdl-27305143

ABSTRACT

A series of water-soluble troponate/aminotroponate ruthenium(II)-arene complexes were synthesized, where O,O and N,O chelating troponate/aminotroponate ligands stabilized the piano-stool mononuclear ruthenium-arene complexes. Structural identities for two of the representating complexes were also established by single-crystal X-ray diffraction studies. These newly synthesized troponate/aminotroponate ruthenium-arene complexes enable efficient C-H bond arylation of arylpyridine in water. The unique structure-activity relationship in these complexes is the key to achieve efficient direct C-H bond arylation of arylpyridine. Moreover, the steric bulkiness of the carboxylate additives systematically directs the selectivity toward mono- versus diarylation of arylpyridines. Detailed mechanistic studies were performed using mass-spectral studies including identification of several key cyclometalated intermediates. These studies provided strong support for an initial cycloruthenation driven by carbonate-assisted deprotonation of 2-phenylpyridine, where the relative strength of η(6)-arene and the troponate/aminotroponate ligand drives the formation of cyclometalated 2-phenylpyridine Ru-arene species, [(η(6)-arene)Ru(κ(2)-C,N-phenylpyridine) (OH2)](+) by elimination of troponate/aminotroponate ligands and retaining η(6)-arene, while cyclometalated 2-phenylpyridine Ru-troponate/aminotroponate species [(κ (2)-troponate/aminotroponate)Ru(κ(2)-C,N-phenylpyridine)(OH2)2] was generated by decoordination of η(6)-arene ring during initial C-H bond activation of 2-phenylpyridine. Along with the experimental mass-spectral evidence, density functional theory calculation also supports the formation of such species for these complexes. Subsequently, these cycloruthenated products activate aryl chloride by facile oxidative addition to generate C-H arylated products.

SELECTION OF CITATIONS
SEARCH DETAIL
...