Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
GM Crops Food ; 14(1): 1-17, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37725519

ABSTRACT

CRISPR/Cas9 gene editing system is recently developed robust genome editing technology for accelerating plant breeding. Various modifications of this editing system have been established for adaptability in plant varieties as well as for its improved efficiency and portability. This review provides an in-depth look at the various strategies for synthesizing gRNAs for efficient delivery in plant cells, including chemical synthesis and in vitro transcription. It also covers traditional analytical tools and emerging developments in detection methods to analyze CRISPR/Cas9 mediated mutation in plant breeding. Additionally, the review outlines the various analytical tools which are used to detect and analyze CRISPR/Cas9 mediated mutations, such as next-generation sequencing, restriction enzyme analysis, and southern blotting. Finally, the review discusses emerging detection methods, including digital PCR and qPCR. Hence, CRISPR/Cas9 has great potential for transforming agriculture and opening avenues for new advancements in the system for gene editing in plants.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Plant Breeding , Agriculture , Blotting, Southern
2.
3 Biotech ; 13(6): 213, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37251733

ABSTRACT

Melampsora medusae f. sp. deltoidae is causing serious foliar rust disease on Populus deltoides clones in India. In the present study, a novel fungal hyperparasite on M. medusae has been reported. The hyperparasitic fungus was isolated from the uredeniospores of the rust fungi and identified as Cladosporium oxysporum by morphological characterization and DNA barcode technique based on the Internal Transcribed Spacer (ITS) region of nrDNA and beta-tubulin (TUB) gene region. Hyperparasitism was further confirmed through leaf assay and cavity slide methods. Leaf assay method showed no adverse effect of C. oxysporum on poplar leaves. However, the mean germination percentage of urediniospores was significantly decreased (p < 0.05) in the cavity slide method when a conidial suspension (1.5 × 107 conidia per ml) of C. oxysporum was applied in different deposition sequences. Scanning and light microscopic observations were made to explore the mode of action of the hyperparasitism. The antagonistic fungus vividly showed three different types of antagonism mechanisms, including enzymatic, direct, and contact parasitism. Alternatively, by screening 25 high-yielding clones of P. deltoides, five clones (FRI-FS-83, FRI-FS-92, FRI-FS-140, FRI-AM-111, and D-121) were enlisted under highly resistant category. Present study revealed an antagonistic relationship between C. oxysporum and M. medusae, which could be an effective method of biocontrol in field plantations of poplar. Combining this biocontrol approach with the use of resistant host germplasm could be an environment friendly strategy for preventing foliar rust and increasing poplar productivity in northern India. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03623-x.

SELECTION OF CITATIONS
SEARCH DETAIL
...