Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Factors ; 66(5): 1490-1503, 2024 May.
Article in English | MEDLINE | ID: mdl-36898850

ABSTRACT

BACKGROUND: Historical biases in ergonomics-related studies have been attributed to lack of participant diversity and sensitivity of measurements to capture variability between diverse groups. We posit that a neuroergonomics approach, that is, study of brain-behavior relationships during fatiguing work, allows for unique insights on sex differences in fatigue mechanisms that are not available via traditional "neck down" measurement approaches. OBJECTIVE: This study examined the supraspinal mechanisms of exercise performance under fatigue and determined if there were any sex differences in these mechanisms. METHODS: Fifty-nine older adults performed submaximal handgrip contractions until voluntary fatigue. Traditional ergonomics measures, namely, force variability, electromyography (EMG) of arm muscles, and strength and endurance times, and prefrontal and motor cortex hemodynamic responses were recorded. RESULTS: There were no significant differences observed between older males and females in fatigability outcomes (i.e., endurance times, strength loss, and EMG activity) and brain activation. Effective connectivity from prefrontal to motor areas was significant for both sexes throughout the task, but during fatigue, males had higher interregional connectivity than females. DISCUSSION: While traditional metrics of fatigue were comparable between the sexes, we observed distinct sex-specific neuromotor strategies (i.e., information flow between frontal-motor regions) that were adopted by older adults to maintain motor performance. APPLICATION: The findings from this study offer insights into the capabilities and adaptation strategies of older men and women under fatiguing conditions. This knowledge can facilitate in the development of effective and targeted ergonomic strategies that accommodate for the varying physical capacities of diverse worker demographics.


Subject(s)
Muscle Fatigue , Muscle, Skeletal , Humans , Female , Male , Aged , Muscle, Skeletal/physiology , Muscle Fatigue/physiology , Hand Strength , Electromyography , Fatigue
2.
Appl Ergon ; 113: 104097, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37506618

ABSTRACT

This study captured neurophysiological, muscular, and perceptual adaptations to shoulder exoskeleton use during overhead work with competing physical-cognitive demands. Twenty-four males and females, randomly divided into control and exoskeleton groups, performed an overhead reaching and pointing task over three days without (single task) and with (dual task) a working memory task. Task performance, electromyography (EMG), neural activity, heart rate, and subjective responses were collected. While task completion time reduced for both groups at the same rate over days, EMG activity of shoulder muscles was lower for the exoskeleton group for both tasks, specifically for females during the dual task. Dual task reduced the physiological benefits of exoskeletons and neuromotor strategies to adapt to the dual task demands differed between the groups. Neuromuscular benefits of exoskeleton use were immediately realized irrespective of cognitive demand, however the perceptual, physiological, and neural adaptations with exoskeleton use were task- and sex-specific.


Subject(s)
Exoskeleton Device , Female , Humans , Male , Biomechanical Phenomena , Cognition , Electromyography , Muscle, Skeletal/physiology , Shoulder/physiology
3.
Hum Factors ; 65(8): 1804-1820, 2023 Dec.
Article in English | MEDLINE | ID: mdl-34865562

ABSTRACT

BACKGROUND: Stress affects learning during training, and virtual reality (VR) based training systems that manipulate stress can improve retention and retrieval performance for firefighters. Brain imaging using functional Near Infrared Spectroscopy (fNIRS) can facilitate development of VR-based adaptive training systems that can continuously assess the trainee's states of learning and cognition. OBJECTIVE: The aim of this study was to model the neural dynamics associated with learning and retrieval under stress in a VR-based emergency response training exercise. METHODS: Forty firefighters underwent an emergency shutdown training in VR and were randomly assigned to either a control or a stress group. The stress group experienced stressors including smoke, fire, and explosions during the familiarization and training phase. Both groups underwent a stress memory retrieval and no-stress memory retrieval condition. Participant's performance scores, fNIRS-based neural activity, and functional connectivity between the prefrontal cortex (PFC) and motor regions were obtained for the training and retrieval phases. RESULTS: The performance scores indicate that the rate of learning was slower in the stress group compared to the control group, but both groups performed similarly during each retrieval condition. Compared to the control group, the stress group exhibited suppressed PFC activation. However, they showed stronger connectivity within the PFC regions during the training and between PFC and motor regions during the retrieval phases. DISCUSSION: While stress impaired performance during training, adoption of stress-adaptive neural strategies (i.e., stronger brain connectivity) were associated with comparable performance between the stress and the control groups during the retrieval phase.


Subject(s)
Brain , Virtual Reality , Humans , Cognition , Learning , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology
4.
Appl Ergon ; 101: 103691, 2022 May.
Article in English | MEDLINE | ID: mdl-35086006

ABSTRACT

Stress impairs motor performance, which is exacerbated with age. Stress also impairs brain activity in the prefrontal cortex, which communicates with the motor areas of the brain to regulate exercise and motor performance. To develop ergogenic strategies for the aging workforce, mind (brain)-body mechanisms behind the effect of stress on neuromuscular performance need to be well understood. This study investigated the influence of social stress on motor performance and information flow between the frontal and motor regions of the brain during intermittent handgrip contractions among older adults. Thirty older adults, balanced by gender, performed intermittent handgrip contractions at 30% of maximum strength before and after being subjected to a social stressor. Force steadiness, strength loss, root mean square electromyogram (EMG) activity, activation of the brain regions, and functional and effective connectivity between the frontal and motor brain regions were computed for pre- and post-stressor handgrip contractions. Older men exhibited improved motor performance after the stressor and concomitant reduction in functional connectivity between the frontal-motor brain regions ipsilateral to the contracting hand. Additionally, while both sexes exhibited significant causal information flow, i.e., effective connectivity, from the frontal to the motor regions of the brain, irrespective of the stressor, older women exhibited a bidirectional effective connectivity between the frontal-motor brain regions after the stressor. Stress had a facilitative effect on the motor performance of older men through compensatory brain network reorganization. Older women exhibited comparable motor performance pre/post stress, despite showing an increase in bidirectional information flow between the frontal-motor areas. Employing brain hemodynamics can facilitate better understanding of the impact of stress on neuromuscular performance and its differential impacts on brain network reorganization between the sexes.


Subject(s)
Aging , Hand Strength , Aged , Aging/physiology , Brain/physiology , Electromyography , Female , Hand , Hand Strength/physiology , Humans , Magnetic Resonance Imaging , Male
5.
Brain Sci ; 11(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209388

ABSTRACT

The nature of firefighters` duties requires them to work for long periods under unfavorable conditions. To perform their jobs effectively, they are required to endure long hours of extensive, stressful training. Creating such training environments is very expensive and it is difficult to guarantee trainees' safety. In this study, firefighters are trained in a virtual environment that includes virtual perturbations such as fires, alarms, and smoke. The objective of this paper is to use machine learning methods to discern encoding and retrieval states in firefighters during a visuospatial episodic memory task and explore which regions of the brain provide suitable signals to solve this classification problem. Our results show that the Random Forest algorithm could be used to distinguish between information encoding and retrieval using features extracted from fNIRS data. Our algorithm achieved an F-1 score of 0.844 and an accuracy of 79.10% if the training and testing data are obtained at similar environmental conditions. However, the algorithm's performance dropped to an F-1 score of 0.723 and accuracy of 60.61% when evaluated on data collected under different environmental conditions than the training data. We also found that if the training and evaluation data were recorded under the same environmental conditions, the RPM, LDLPFC, RDLPFC were the most relevant brain regions under non-stressful, stressful, and a mix of stressful and non-stressful conditions, respectively.

6.
Front Neurogenom ; 2: 779069, 2021.
Article in English | MEDLINE | ID: mdl-38235237

ABSTRACT

Neuromuscular fatigue is exacerbated under stress and is characterized by shorter endurance time, greater perceived effort, lower force steadiness, and higher electromyographic activity. However, the underlying mechanisms of fatigue under stress are not well-understood. This review investigated existing methods of identifying central mechanisms of neuromuscular fatigue and the potential mechanisms of the influence of stress on neuromuscular fatigue. We found that the influence of stress on the activity of the prefrontal cortex, which are also involved in exercise regulation, may contribute to exacerbated fatigue under stress. We also found that the traditional methods involve the synchronized use of transcranial magnetic stimulation, peripheral nerve stimulation, and electromyography to identify the contribution of supraspinal fatigue, through measures such as voluntary activation, motor evoked potential, and silent period. However, these popular techniques are unable to provide information about neural alterations upstream of the descending drive that may contribute to supraspinal fatigue development. To address this gap, we propose that functional brain imaging techniques, which provide insights on activation and information flow between brain regions, need to be combined with the traditional measures of measuring central fatigue to fully understand the mechanisms behind the influence of stress on fatigue.

7.
Front Hum Neurosci ; 14: 564969, 2020.
Article in English | MEDLINE | ID: mdl-33240061

ABSTRACT

Type 1 diabetes (T1D) is associated with reduced muscular strength and greater muscle fatigability. Along with changes in muscular mechanisms, T1D is also linked to structural changes in the brain. How the neurophysiological mechanisms underlying muscle fatigue is altered with T1D and sex related differences of these mechanisms are still not well investigated. The aim of this study was to determine the impact of T1D on the neural correlates of handgrip fatigue and examine sex and T1D related differences in neuromuscular performance parameters, neural activation and functional connectivity patterns between the motor regions of the brain. Forty-two adults, balanced by condition (healthy vs T1D) and sex (male vs female), and performed submaximal isometric handgrip contractions until voluntary exhaustion. Initial strength, endurance time, strength loss, force variability, and complexity measures were collected. Additionally, hemodynamic responses from motor-function related cortical regions, using functional near-infrared spectroscopy (fNIRS), were obtained. Overall, females exhibited lower initial strength (p < 0.0001), and greater strength loss (p = 0.023) than males. While initial strength was significantly lower in the T1D group (p = 0.012) compared to the healthy group, endurance times and strength loss were comparable between the two groups. Force complexity, measured as approximate entropy, was found to be lower throughout the experiment for the T1D group (p = 0.0378), indicating lower online motor adaptability. Although, T1D and healthy groups fatigued similarly, only the T1D group exhibited increased neural activation in the left (p = 0.095) and right (p = 0.072) supplementary motor areas (SMA) over time. A sex × condition × fatigue interaction effect (p = 0.044) showed that while increased activation was observed in both T1D females and healthy males from the Early to Middle phase, this was not observed in healthy females or T1D males. These findings demonstrate that T1D adults had lower adaptability to fatigue which they compensated for by increasing neural effort. This study highlights the importance of examining both neural and motor performance signatures when investigating the impact of chronic conditions on neuromuscular fatigue. Additionally, the findings have implications for developing intervention strategies for training, rehabilitation, and ergonomics considerations for individuals with chronic conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...