Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Neurotoxicol Teratol ; 97: 107174, 2023.
Article in English | MEDLINE | ID: mdl-36907230

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) cause potential threats to biota and are persistent and never-ending substances in the environment. Regulations and ban on legacy PFAS by various global organizations and national level regulatory agencies had shifted the fluorochemical production to emerging PFAS and fluorinated alternatives. Emerging PFAS are mobile and more persistent in aquatic systems, posing potential greater threats to human and environmental health. Emerging PFAS have been found in aquatic animals, rivers, food products, aqueous film-forming foams, sediments, and a variety of other ecological media. This review summarizes the physicochemical properties, sources, occurrence in biota and the environment, and toxicity of the emerging PFAS. Fluorinated and non-fluorinated alternatives for several industrial applications and consumer goods as the replacement of historical PFAS are also discussed in the review. Fluorochemical production plants and wastewater treatment plants are the main sources of emerging PFAS to various environmental matrices. Information and research are scarcely available on the sources, existence, transport, fate, and toxic effects of emerging PFAS to date.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Animals , Humans , Fluorocarbons/toxicity , Water Pollutants, Chemical/toxicity
2.
J Environ Health Sci Eng ; 20(2): 1089-1109, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36406623

ABSTRACT

In recent years, artificial intelligence (AI) techniques have been recognized as powerful techniques. In this work, AI techniques such as artificial neural networks (ANNs), support vector machines (SVM), adaptive neuro-fuzzy inference system (ANFIS), genetic algorithms (GA), and particle swarm optimization (PSO), used in water and wastewater treatment processes, are reviewed. This paper describes applications of the mentioned AI techniques for the modelling and optimization of electrochemical processes for water and wastewater treatment processes. Most research in the mentioned scope of study consists of electrooxidation, electrocoagulation, electro-Fenton, and electrodialysis. Also, ANNs have been the most frequent technique used for modelling and optimization of these processes. It was shown that most of the AI models have been built with a relatively low number of samples (< 150) in data sets. This points out the importance of reliability and robustness of the AI models derived from these techniques. We show how to improve the performance and reduce the uncertainty of these developed black-box data-driven models. From the perspectives of both experiment and theory, this review demonstrates how AI techniques can be effectively adapted to electrochemical processes for water and wastewater treatment to model and optimize these processes. Supplementary Information: The online version contains supplementary material available at 10.1007/s40201-022-00835-w.

3.
Water Sci Technol ; 86(5): 909-937, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36358037

ABSTRACT

Wastewater generated from households can be classified into greywater and blackwater. Greywater makes up a substantial portion of household wastewater. Such water consists of wastewater released from kitchen sinks, showers, laundries, and hand basins. Since the greywater is not mixed with human excreta and due to the low levels of pathogenic contamination and nitrogen, it has received more attention for recycling and reusing in recent decades. Implementing decentralized greywater treatment systems can be an effective solution to overcome water scarcity by supplying a part of water requirement, at least non-potable demand, and decreasing pollutant emissions by eliminating long-distance water transportation in remote regions, like rural and isolated areas. This review focuses on greywater management in terms of reducing environmental risks as well as the possibility of treatment. Effective management of water reclamation systems is essential for a decentralized approach and to ensure the protection of public health. In this regard, the environmental impacts of disposal or reusing the untreated greywater are discussed. Furthermore, the most appropriate technologies that can be employed for the decentralized treatment of greywaters like constructed wetlands, waste stabilization ponds, membrane systems, and electrochemical technologies are described. Finally, this review summarizes resource recovery and sustainable resource reuse.


Subject(s)
Waste Disposal, Fluid , Wastewater , Humans , Water , Recycling , Environment , Politics
4.
Environ Sci Pollut Res Int ; 29(8): 10966-11003, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35001276

ABSTRACT

The gap between water demand and available water supply led to wastewater treatment, particularly greywater. Due to specific characteristics of grey wastewater, treatment and recycling of this type of wastewater capture global attention. This paper presents a literature review of the remediation of greywater by adsorption processes. Besides, the reclamation of the grey wastewater in the context of the circular economy is highlighted. In this regard, the characterization of various types of grey wastewater, the potential risks associated with greywater, and the properties of reclaimed water as per the regulation or guideline are summarized. These standards vary based on the application of reused water and from a country to another country. Furthermore, this review elucidates the adsorption process in terms of the type of adsorbents, modification of adsorbents and their regeneration process, adsorption isotherm, kinetics and thermodynamic of adsorption, and optimization of adsorption system. Finally, the removal of different pollutants from greywater by various adsorbents and techno-economic aspects are illustrated.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical/analysis
5.
J Environ Manage ; 297: 113336, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34325368

ABSTRACT

PFAs (poly and perfluoroalkyl compounds) are hazardous and bioaccumulative chemicals that do not readily biodegrade or neutralize under normal environmental conditions. They have various industrial, commercial, domestic and defence applications. According to the Organization for Economic Co-operation and Development, there are around 4700 PFAs registered to date. They are present in every stream of life, and they are often emerging and are even difficult to be detected by the standard chemical methods. This review aims to focus on the sources of various PFAs and the toxicities they impose on the environment and especially on humankind. Drinking water, food packaging, industrial areas and commercial household products are the primary PFAs sources. Some of the well-known treatment methods for remediation of PFAs presented in the literature are activated carbon, filtration, reverse osmosis, nano filtration, oxidation processes etc. The crucial stage of handling the PFAs occurs in determining and analysing the type of PFA and its remedy. This paper provides a state-of-the-art review of determination & tools, and techniques for remediation of PFAs in the environment. Improving new treatment methodologies that are economical and sustainable are essential for excluding the PFAs from the environment.


Subject(s)
Drinking Water , Fluorocarbons , Water Pollutants, Chemical , Charcoal , Drinking Water/analysis , Filtration , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis
6.
Environ Res ; 182: 109094, 2020 03.
Article in English | MEDLINE | ID: mdl-31927243

ABSTRACT

Biovalorization of pulp and paper activated sludge to value-added products could be an effective alternative to traditional sludge management methods, which tend to pose serious environmental issues. Since pulp and paper activated sludge consists of microbial biomass, cellulose, hemicellulose and lignin and thus, could be subjected to different hydrolysis methods to solubilize sludge solids and release simple sugars to form value-added products by the microbial fermentation process. Hence, different sludge hydrolysis methods have been summarized in this review paper. However, hydrolysis of lignocellulosic materials generates variety of toxic compounds during hydrolysis and causes detrimental effects. Therefore, different toxic compounds and their impact on microorganisms, cellulolytic enzymes and fermentation process have been discussed in detail and recent strategies to counteract the problems of inhibitors have also been briefly explained.


Subject(s)
Lignin , Sewage , Biomass , Fermentation , Hydrolysis , Paper
7.
Environ Technol ; 40(17): 2215-2224, 2019 Jul.
Article in English | MEDLINE | ID: mdl-28675988

ABSTRACT

Isolation of extracellular polymeric substances (EPSs) producing bacterial strains capable of using sludge as low-cost growth substrate was carried out in this study. A total of 110 EPS-producing strains were isolated from different sources, which include sludge of beer and winery wastewater treatment plant (WWTP); young, 2-month-old and 10-year-old leachate. Thirty-seven isolated strains showed good growth in sludge medium with cell count varying from 106 to 1010 most probable number (MPN)/mL and total EPS concentration from 2737 to 6639 mg/L. Twenty-one strains produced EPS with high flocculation activity (FAmax varied from 72.0% to 80.2%). The highest FAmax (80.2%) was observed with EPS produced by strain BES 19, which was isolated from sludge of beer WWTP. Sludge of beer WWTP, young leachate and 10-year-old leachate were good sources for isolation of EPS-producing bacteria.


Subject(s)
Sewage , Wastewater , Bacteria , Extracellular Polymeric Substance Matrix , Flocculation
8.
Bioresour Technol ; 273: 288-296, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30448680

ABSTRACT

The effect of dissolved oxygen concentration on lipid accumulation in Trichosporon oleaginosus has been investigated. The experiment was performed in 15 L fermenters. The dissolved oxygen concentration varied by adjusting the agitation and aeration. High dissolved oxygen level at 50%-60% enhanced cell growth. Maintaining low dissolved oxygen concentration at 20%-30% during lipogenesis phase led to high final lipid content (51%) in Trichosporon oleaginosus. The consumptions of energy and cost of the process were evaluated. The energy consumption in the dissolved oxygen level optimized process was 41% less than that with dissolved oxygen level at 50%-60%. In addition, the cost was also reduced around one time in the dissolved oxygen level optimized process compared to the one with dissolved oxygen level at 50%-60%. The study provided a feasible way of enhancing lipid accumulation in Trichosporon oleaginosus and reducing the consumption of energy and cost of lipid production from Trichosporon oleaginosus.


Subject(s)
Glycerol/metabolism , Lipids/biosynthesis , Oxygen/metabolism , Trichosporon/metabolism , Costs and Cost Analysis , Fermentation , Lipids/economics
9.
J Environ Sci (China) ; 66: 225-245, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29628091

ABSTRACT

Extracellular polymeric substances (EPS) produced by microorganisms represent biological macromolecules with unfathomable potentials and they are required to be explored further for their potential application as a bioflocculant in various wastewater sludge treatment. Although several studies already exist on biosynthetic pathways of different classical biopolymers like alginate and xanthan, no dedicated studies are available for EPS in sludge. This review highlights the EPS composition, functionality, and biodegradability for its potential use as a carbon source for production of other metabolites. Furthermore, the effect of various extraction methods (physical and chemical) on compositional, structural, physical and functional properties of microbial EPS has been addressed. The vital knowledge of the effect of extraction method on various important attributes of EPS can help to choose the suitable extraction method depending upon the intended use of EPS. The possible use of different molecular biological techniques for enhanced production of desired EPS was summarized.


Subject(s)
Polysaccharides, Bacterial/analysis , Sewage/microbiology , Waste Disposal, Fluid/methods , Biodegradation, Environmental , Biopolymers , Flocculation , Polysaccharides, Bacterial/metabolism , Sewage/chemistry , Wastewater
10.
Crit Rev Biotechnol ; 38(6): 902-917, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29510650

ABSTRACT

Utilization of microbial oil for biodiesel production has gained growing interest due to the increase in prices and the shortage of the oils and fats traditionally used in biodiesel production. However, it is still in the laboratory study stage due to the high cost of production. Employing organic wastes as raw materials to grow heterotrophic oleaginous microorganisms for further lipid production to produce biodiesel has been predicted to be a promising method for reducing costs. However, there are many obstacles including the low biodegradability of organic wastes, low lipid accumulation capacity of heterotrophic oleaginous microorganisms while using organic wastes, a great dependence on a high-energy consumption approach for biomass harvesting, utilization of toxic organic solvents for lipid extraction, and large amount of methanol required in trans-esterification and in-situ trans-esterifications. Ultra-sonication as a green technology has been extensively utilized to enhance bio-product production from organic wastes. In this article, ultra-sonication applications in biodiesel production steps with heterotrophic oleaginous microorganisms have been reviewed, and its impact, potential, and limitations on the process have been discussed.


Subject(s)
Biofuels , Industrial Microbiology/methods , Sonication , Esterification , Lipids
11.
Bioresour Technol ; 259: 237-243, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29567595

ABSTRACT

In this study, it was found that the optimal pH for the growth of Trichosporon oleaginosus was related to the fermentation medium. A neutral or weak acid pH condition was optimal for the growth of Trichosporon oleaginosus in the extract-peptone-dextrose and wastewater sludge medium. Significant inhibition was observed at neutral pH in the wastewater sludge + crude glycerol medium due to the high soap content of the crude glycerol. By converting the soap to free fatty acid (FFA) at pH 5, the soap inhibition could be prevented. Fed-batch fermentation was employed to produce lipid from Trichosporon oleaginosus at pH 5 controlled by feeding crude glycerol. A remarkably high biomass (65.63 g/L) and lipid (35.79 g/L) concentration were achieved from the pH-based fed-batch fermentation in this study.


Subject(s)
Lipids , Trichosporon , Basidiomycota , Biomass , Fermentation , Glycerol
12.
Bioresour Technol ; 253: 41-48, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29328933

ABSTRACT

Currently, there are mainly two pathways of the biodiesel production from wastewater sludge including 1) directly extracting the lipid in sludge and then converting the lipid to biodiesel through trans-esterification, and 2) employing sludge as medium to cultivate oleaginous microorganism to accumulate lipid and then transferring the lipid to biodiesel. So far, the study was still in research stage and its cost feasibility was not yet investigated. In this study, biodiesel production from wastewater sludge was designed and the cost was estimated with SuperPro Designer. With consideration of converting the lipid in raw sludge to biodiesel, the unit production cost was 0.67 US $/kg biodiesel (0.59 US $/L biodiesel). When the sludge was used as medium to grow oleaginous microorganism to accumulate lipid for producing biodiesel, the unit production cost was 1.08 US $/kg biodiesel (0.94 US $/L biodiesel). The study showed that sludge has great potential in biodiesel production.


Subject(s)
Biofuels , Sewage , Wastewater , Esterification , Lipids
13.
Bioresour Technol ; 253: 8-15, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29328937

ABSTRACT

In this work, methanol in crude glycerol solution was used to assist the lipid production with oleaginous yeast Trichosporon oleaginosus cultivated under non-sterilized conditions. The investigated methanol concentration was 0%, 1.4%, 2.2%, 3.3% and 4.4% (w/v). The results showed that methanol played a significant role in the non-sterilized fermentation for lipid production. The optimal methanol concentration was around 1.4% (w/v) in which the growth of T. oleaginosus was promoted and overcame that of the contaminants. The non-sterilized fed-batch fermentation with initial methanol concentration of 1.4% (w/v) was then performed and high biomass production (43.39 g/L) and lipid production (20.42 g/L) were achieved.


Subject(s)
Glycerol , Lipids , Trichosporon , Fermentation , Methanol
14.
Waste Manag ; 71: 164-175, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29097125

ABSTRACT

In this study, crude, purified, and pure glycerol were used to cultivate Trichosporon oleaginosus for lipid production which was then used as feedstock of biodiesel production. The purified glycerol was obtained from crude glycerol by removing soap with addition of H3PO4 which converted soap to free fatty acids and then separated from the solution. The results showed that purified glycerol provided similar performance as pure glycerol in lipid accumulation; however, crude glycerol as carbon source had negatively impacted the lipid production of T. oleaginosus. Purified glycerol was later used to determine the optimal glycerol concentration for lipid production. The highest lipid yield 0.19g/g glycerol was obtained at 50g/L purified glycerol in which the biomass concentration and lipid content were 10.75g/L and 47% w/w, respectively. An energy gain of 4150.51MJ could be obtained with 1tonne of the crude glycerol employed for biodiesel production through the process proposed in this study. The biodiesel production cost estimated was 6.32US$/gal. Fatty acid profiles revealed that C16:0 and C18:1 were the major compounds of the biodiesel from the lipid produced by T. oleaginosus cultivated with crude and purified glycerol. The study found that purified glycerol was promising carbon source for biodiesel production.


Subject(s)
Biofuels , Glycerol/chemistry , Biomass , Cooking , Lipids , Waste Management
15.
Appl Biochem Biotechnol ; 184(4): 1332-1346, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29027121

ABSTRACT

The objective of this research was to investigate the kinetics of lipid production by Yarrowia lipolytica SKY7 in the crude glycerol-supplemented media with and without the control of pH. Lipid and citric acid production were improved with the pH control condition. There was no significant difference observed in the biomass concentration with or without the pH control. In the pH-controlled experiments, the biomass and lipid concentration reached 18 and 7.78 g/L, (45.5% w/w), respectively, with lipid yield (Yp/s) of 0.179 g/g at 60 h of fermentation. The lipid production was directly correlated with growth and the process was defined as growth associated. After 60 h of fermentation, the lipid degradation was noticed in the pH-controlled reactor whereas it occurred after 84 h in the pH-uncontrolled reactor. Apart from lipid, citric acid was produced as the major extracellular product in both fermentations but the much lower concentration in uncontrolled pH. Based on the experimental results, it is evident that controlling the pH will enhance the lipid production by 15% compared to pH-uncontrolled fermentation.


Subject(s)
Lipids/biosynthesis , Yarrowia/growth & development , Hydrogen-Ion Concentration
16.
Water Environ Res ; 89(5): 424-439, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28442003

ABSTRACT

Oleaginous yeast Trichosporon oleaginosus was studied for lipid production using municipal sludge with or without fortification of crude glycerol in a 15-L fermenter. The maximum lipid content (concentration) was 32.0% w/w (9.35 g/L), 33.6% (10.13 g/L), 33.3% (9.13 g/L), and 33.1% (9.03 g/L) w/w with the addition of 25, 50, 100, and 150 g/L glycerol, respectively. Glycerol concentration had little effect on lipid accumulation. However, glycerol concentration substantially affected increase of biomass concentration and cell count. The suitable glycerol concentration was approximately 40 g/L for Trichosporon oleaginosus growing in sludge medium with initial suspended solids (SS) concentration 30 g/L. Addition of nitrogen to sludge-glycerol medium enhanced lipid and biomass concentration. The energy conversion efficiency was 1.78, 1.55, and 1.71 with no nitrogen added, with addition of 1 g/L urea, and 3.7 g/L peptone, respectively. The biodiesel production cost was estimated nearly 0.75 US$/L.


Subject(s)
Biofuels , Glycerol/metabolism , Lipids/biosynthesis , Sewage/chemistry , Trichosporon/metabolism , Biomass , Costs and Cost Analysis , Fermentation
17.
Bioresour Technol ; 221: 234-240, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27639676

ABSTRACT

The objective of this work was to study the kinetics of lipid production at lab scale fermenters by a new isolate of Yarrowia lipolytica SKY7. The model terms glycerol concentration inoculum and C/N ratio with inoculum were found to be significant for lipid production. Lipid production was found to be higher in glycerol 82.5g/L, C/N ratio 75 and inoculum volume 6.25%. Optimized culture conditions were tested at 15L bench scale reactor. The biomass concentration and lipid content obtained was 29.5g/L and 50% (w/w), respectively. The yield coefficients were calculated and found to be 0.332g/g (g biomass/g of glycerol) of biomass and 0.179g/g (g lipid/g glycerol consumed) for lipid. Observed rates of lipid production show lipid production from 30h of fermentation. Out of the total glycerol consumed, 41.1% glycerol was converted into biomass, lipid, and citric acid.


Subject(s)
Lipids/biosynthesis , Yarrowia/metabolism , Biofuels , Biomass , Bioreactors/microbiology , Citric Acid/metabolism , Fatty Acids, Nonesterified/metabolism , Fermentation , Glycerol/metabolism , Kinetics , Methanol/metabolism , Yarrowia/growth & development , Yarrowia/isolation & purification
18.
J Environ Manage ; 180: 344-50, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27243923

ABSTRACT

Effect of ten extraction methods on flocculation activity and chemical composition of bio-flocculants recovered from backwashed sludge of bio-filtration unit was studied. The results showed that the chemical method was better than physical method with respect to the extracted BFs weight and its flocculation activity. Cell lysis did not affect to the flocculation activity of BFs. Among ten extraction methods, EDTA (20 g/L) was the best one with extracted BFs dry weight of 6242 mg/L and flocculation activity of 83%. Optimization of EDTA concentration showed that 5 g EDTA/L (or 0.2 g EDTA/g SS) was suitable for recovery of BFs from backwashed sludge. The flocculation activity of BFs was 94% when using 2.4 mg of BFs/g of kaolin. The outcome of this study suggested that backwashed sludge of the bio-filtration unit was a potential source for exploiting bio-flocculants.


Subject(s)
Filtration/methods , Sewage/chemistry , Water Purification/methods , Edetic Acid/chemistry , Flocculation , Formaldehyde/chemistry , Kaolin/chemistry
20.
Water Environ Res ; 87(6): 533-46, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26459822

ABSTRACT

Thirteen extracellular polymeric substances (EPS) producing bacterial strains were cultivated (as pure/mixed culture) in sterilized sludge (suspended solids: 25 g/L). The mixed culture produced higher concentrations of EPS (4.9 g/L) as compared to that of the pure culture (2.7-3.7 g/L). The harvested EPS were examined for their flocculation performance (turbidity removal and dewatering) in jar tests using kaolin suspensions with Ca2+. Broth (B-EPS) revealed high kaolin flocculating activity (91.2%) at very low concentrations (0.8 mg B-EPS/g kaolin) and it was comparable to the chemical polymer, Magnafloc-155 (90.4% at 0.2 mg/g kaolin). B-EPS also exhibited very good flocculation performance (turbidity removal %) in river water (93.5%), municipal wastewater (91.7%) and brewery wastewater (81.8%). The study revealed that the mixed culture consortium could be used for the production of highly efficient flocculants.


Subject(s)
Bacteria/metabolism , Biopolymers/biosynthesis , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Biopolymers/chemistry , Rivers/chemistry , Sewage , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...