Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(5): 1218-1226, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38276789

ABSTRACT

We propose a single-parameter effective one-particle potential, termed the single-pole exchange-correlation (1p-XC), to rapidly evaluate electron affinities (EAs) of nonvalence electronic states of molecular clusters and nanoassemblies. The model combines exact-exchange and the random phase approximation (RPA) correlation potential with a single-pole approximation to model the frequency-dependent polarization function. It captures long-range static and dynamic-frequency effects in the correlation potential, with mean absolute errors of 0.06 eV for EAs of hydrated- and ammoniated-electron clusters with EA values in the range 0.24-1.77 eV. The 1p-XC approximation enables EA estimation with a computational wall-time similar to that of hybrid functionals. The model also provides a compressed-basis, which significantly reduces the rank of higher-level parameter-free one-particle Hamiltonians and further simplifies the computation of EAs. The compressed-basis approach is used to model the hybridization of superatomic molecular states of (C60)2- and (C60)3-, thereby verifying previous model Hamiltonian studies.

2.
J Phys Chem A ; 127(28): 5823-5832, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37406194

ABSTRACT

Halogenation of aromatic molecules is frequently used to modulate intermolecular interactions with ramifications for optoelectronic and mechanical properties. In this work, we accurately quantify and understand the nature of intermolecular interactions in perhalogenated benzene (PHB) clusters. Using benchmark binding energies from the fixed-node diffusion Monte Carlo (FN-DMC) method, we show that generalized Kohn-Sham semicanonical projected random phase approximation (GKS-spRPA) plus approximate exchange kernel (AKX) provides reliable interaction energies with mean absolute error (MAE) of 0.23 kcal/mol. Using the GKS-spRPA+AXK method, we quantify the interaction energies of several binding modes of PHB clusters ((C6X6)n; X = F, Cl, Br, I; n = 2, 3). For a given binding mode, the interaction energies increase 3-4 times from X = F to X = I; the X-X binding modes have energies in the range of 2-4 kcal/mol, while the π-π binding mode has interaction energies in the range of 4-12 kcal/mol. SAPT-DFT-based energy decomposition analysis is then used to show that the equilibrium geometries are dictated primarily by the dispersion and exchange interactions. Finally, we test the accuracy of several dispersion-corrected density functional approximations and show that only the r2SCAN-D4 method has a low MAE and correct long-range behavior, which makes it suitable for large-scale simulations and for developing structure-function relationships of halogenated aromatic systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...