Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(9): e19237, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37674843

ABSTRACT

Identifying the molecular and genetic basis of resistance to Sclerotinia stem rot (Sclerotinia sclerotiorum) is critical for developing long-term and cost-effective management of this disease in rapeseed/canola (Brassica napus). Current cultural or chemical management options provide, at best, only partial and/or sporadic control. Towards this, a B. napus breeding population (Mystic x Rainbow), including the parents, F1, F2, BC1P1 and BC1P2, was utilized in a field study to determine the inheritance pattern of Sclerotinia stem rot resistance (based on stem lesion length, SLL). Broad sense heritability was 0.58 for SLL and 0.44 for days to flowering (DTF). There was a significant negative correlation between SLL and stem diameter (SD) (r = -0.39) and between SLL and DTF (r = -0.28), suggesting co-selection of SD and DTF traits, along with SLL, should assist in improving overall resistance. Non-additive genetic variance was evident for SLL, DTF, and SD. In a genome wide association study (GWAS), a significant quantitative trait locus (QTL) was identified for SLL. Several putative candidate marker trait associations (MTA) were located within this QTL region. Overall, this study has provided valuable new understanding of inheritance of resistance to S. sclerotiorum, and has identified QTL, MTAs and transgressive segregants with high-level resistances. Together, these will foster more rapid selection for multiple traits associated with Sclerotinia stem rot resistance, by enabling breeders to make critical choices towards selecting/developing cultivars with enhanced resistance to this devastating pathogen.

2.
Mol Biol Rep ; 50(11): 9191-9202, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37776411

ABSTRACT

BACKGROUND: Wheat is a major staple crop and helps to reduce worldwide micronutrient deficiency. Investigating the genetics that control the concentrations of iron (Fe) and zinc (Zn) in wheat is crucial. Hence, we undertook a comprehensive study aimed at elucidating the genomic regions linked to the contents of Fe and Zn in the grain. METHODS AND RESULTS: We performed the multi-locus genome-wide association (ML-GWAS) using a panel of 161 wheat-Aegilops substitution and addition lines to dissect the genomic regions controlling grain iron (GFeC), and grain zinc (GZnC) contents. The wheat panel was genotyped using 10,825 high-quality SNPs and phenotyped in three different environments (E1-E3) during 2017-2019. A total of 111 marker-trait associations (MTAs) (at p-value < 0.001) were detected that belong to all three sub-genomes of wheat. The highest number of MTAs were identified for GFeC (58), followed by GZnC (44) and yield (9). Further, six stable MTAs were identified for these three traits and also two pleiotropic MTAs were identified for GFeC and GZnC. A total of 1291 putative candidate genes (CGs) were also identified for all three traits. These CGs encode a diverse set of proteins, including heavy metal-associated (HMA), bZIP family protein, AP2/ERF, and protein previously associated with GFeC, GZnC, and grain yield. CONCLUSIONS: The significant MTAs and CGs pinpointed in this current study are poised to play a pivotal role in enhancing both the nutritional quality and yield of wheat, utilizing marker-assisted selection (MAS) techniques.


Subject(s)
Aegilops , Iron , Iron/metabolism , Genome-Wide Association Study , Zinc/metabolism , Triticum/genetics , Triticum/metabolism , Aegilops/genetics , Aegilops/metabolism , Genome, Plant , Edible Grain/genetics
3.
Front Genet ; 13: 1021180, 2022.
Article in English | MEDLINE | ID: mdl-36246648

ABSTRACT

A meta-analysis of QTLs associated with grain protein content (GPC) was conducted in hexaploid and tetraploid wheat to identify robust and stable meta-QTLs (MQTLs). For this purpose, as many as 459 GPC-related QTLs retrieved from 48 linkage-based QTL mapping studies were projected onto the newly developed wheat consensus map. The analysis resulted in the prediction of 57 MQTLs and 7 QTL hotspots located on all wheat chromosomes (except chromosomes 1D and 4D) and the average confidence interval reduced 2.71-fold in the MQTLs and QTL hotspots compared to the initial QTLs. The physical regions occupied by the MQTLs ranged from 140 bp to 224.02 Mb with an average of 15.2 Mb, whereas the physical regions occupied by QTL hotspots ranged from 1.81 Mb to 36.03 Mb with a mean of 8.82 Mb. Nineteen MQTLs and two QTL hotspots were also found to be co-localized with 45 significant SNPs identified in 16 previously published genome-wide association studies in wheat. Candidate gene (CG) investigation within some selected MQTLs led to the identification of 705 gene models which also included 96 high-confidence CGs showing significant expressions in different grain-related tissues and having probable roles in GPC regulation. These significantly expressed CGs mainly involved the genes/gene families encoding for the following proteins: aminotransferases, early nodulin 93, glutamine synthetases, invertase/pectin methylesterase inhibitors, protein BIG GRAIN 1-like, cytochrome P450, glycosyl transferases, hexokinases, small GTPases, UDP-glucuronosyl/UDP-glucosyltransferases, and EamA, SANT/Myb, GNAT, thioredoxin, phytocyanin, and homeobox domains containing proteins. Further, eight genes including GPC-B1, Glu-B1-1b, Glu-1By9, TaBiP1, GSr, TaNAC019-A, TaNAC019-D, and bZIP-TF SPA already known to be associated with GPC were also detected within some of the MQTL regions confirming the efficacy of MQTLs predicted during the current study.

4.
Plant Dis ; 106(1): 127-136, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34340556

ABSTRACT

Sclerotinia sclerotiorum is a necrotrophic fungus causing devastating stem rot and associated yield losses of canola/rapeseed (Brassica napus) worldwide, including in Australia. Developing host resistance against Sclerotinia stem rot is critical if this disease in canola/rapeseed is to be successfully managed, as cultural or chemical control options provide only partial or sporadic control. Three B. napus breeding populations, C2, C5 and C6, including the parents, F1, F2, BC1P1, and BC2P2, were used in a field study with an objective of exploring the inheritance pattern of disease resistance (based on stem lesion length [SLL]) and the genetic relationships of disease with stem diameter (SD) or days to first flowering (DTF), and to compare these new adult plant stem resistances against S. sclerotiorum with those of seedling (cotyledon and leaf) resistances in earlier studies. Heritability (broad sense) of SLL was 0.57 and 0.73 for population C2 at 3 and 5 weeks postinoculation and 0.21 for population C5 at 5 weeks postinoculation. Additive genetic variance was evident within all 3 populations for DTF but not for SD. Narrow-sense heritability for DTF was 0.48 (C2), 0.42 (C5), and 0.32 (C6). SD, DTF, and SLL were all inherited independently, with no significant genetic covariance between traits in bivariate analysis. Genetic variance for SLL in populations C2 and C5 was entirely nonadditive, and there was significant nonadditive genetic covariance of SLL at 3 and 5 weeks postinoculation. Generation means analysis in population C2 supported the conclusion that complex epistatic interactions controlled SLL. Several C2 and C5 progeny showed high adult plant stem resistance, which may be critical in developing enhanced stem resistance in canola/rapeseed. Although population C6 showed no genetic variation for SLL resistance in this study, it showed significant nonadditive genetic variance at the cotyledon and leaf stages in earlier studies. We conclude that host resistance varies across different plant growth stages, and breeding must be targeted for resistance at each growth stage. In populations C2, C5, and C6, resistance to S. sclerotiorum in stem, leaf, and cotyledon was always controlled by nonadditive effects such as complex epistasis or dominance. Overall, our findings in relation to the quantitative inheritance of Sclerotinia stem rot resistance, together with the new high-level resistances identified, will enable breeders to select/develop genotypes with enhanced resistances to S. sclerotiorum.


Subject(s)
Ascomycota , Brassica napus , Brassica napus/genetics , Cotyledon , Inheritance Patterns , Plant Breeding , Plant Diseases/genetics , Plant Leaves/genetics , Plant Stems/genetics
5.
Plants (Basel) ; 9(4)2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32272619

ABSTRACT

The sunflower hybrids hold a narrow cytoplasmic diversity. Besides, the heterotic effect of wild cytoplasmic combinations of sunflower on important traits under water stress has not been explored in detail. Here, we evaluated the different sunflower cytoplasmic combinations in sunflower hybrids using cytoplasmic male sterile (CMS) sources as female parents. We used a total of sixteen sunflower genotypes representing twelve CMS lines from wild and conventional sources along with four restorer lines. Twelve CMS lines were crossed with four restorer lines to develop a total of 48 F1 hybrid combinations. The hybrids were evaluated under two different environments (i.e., regular irrigation and water stress) for morphophysiological, yield, and biochemical traits over two years. Heterotic effect for various CMS sources was evaluated on all of the three possible scales, namely, better-parent heterosis (BPH), mid-parent heterosis (MPH), and heterosis as percent of check (PSH-996). For better-parent and mid-parent heterosis, the CMS sources Helianthus annuus, Helianthus argophyllus, and Helianthus debilis demonstrated positive better-parent heterosis for seed yield, oil content, and oleic acid irrespective of the environment. However, the hybrid combinations of different sources when using the genotype RCR8297 as the restorer parent recorded maximum average returns. Furthermore, chlorophyll meter (SPAD) reading positively correlated with days to 50% flowering, days to maturity, plant height, and number of leaves per plant in both the environments. Overall, this study identified and compared the heterotic effect of the different cytoplasmic combinations in sunflower under water stress as well as under normal irrigation environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...