Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(2): 3942-3952, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35962163

ABSTRACT

A solar collector is a simple and cheap device that converts solar radiation into valuable heat energy. The thermal performance of the solar collectors can be enhanced significantly with the suspension of nanoparticles in the base fluid. A novel design for a solar-assisted water heater (SWH) is proposed in the current study, and the effect of nanofluid has been investigated on the thermal efficiency of the SWH. The use of nanofluid is one of the prominent methods in comparison to other techniques for improving the performance of solar collectors. Therefore, the base working fluid, i.e., water is mixed with the alumina nanoparticles of average particle size of 30 nm, and they are assumed to be spherical. The flow and thermal characteristics of nanofluid through the solar water heater are simulated numerically with the help of the Eulerian-Eulerian two-phase model using the finite volume method (FVM). The commercial package ANSYS Fluent, is used for modeling the problem under transient conditions with a pressure-based solver. In comparison to a conventional flat plate collector, the proposed solar water heater consists of a corrugated absorber-plate and the effect of the radius of curvature has been investigated on the heat transfer and collector efficiency. With the proposed design, the heat transfer area available with the riser tubes increases remarkably and it leads to a 43% and 14% increase in heat transfer augmentation and collector efficiency, in comparison to the conventional solar water heater.


Subject(s)
Heating , Solar Energy , Water , Sunlight , Computer Simulation
2.
Environ Sci Pollut Res Int ; 28(38): 52702-52723, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34462854

ABSTRACT

The outbreak of COVID-19 pandemic has created havoc all across the globe causing exponential casualties and tremendous health and economic loss. With increasing COVID-19 cases, the amount of biomedical waste has increased manifolds making more people vulnerable to the pandemic. The developing and underdeveloped countries are already facing the challenges of waste management, and the waste generated during the pandemic scenario has added to the already existing challenges. The improper waste management practices need to be corrected; otherwise, the world will be facing a new disaster that could be termed as 'waste disaster'. The increase in COVID-19-associated waste (CAW) quantity and their availability in the environment will result in their easy approach to other organisms, which will possibly increase the potential risk of food chain contamination. Some of the countries have already started to make backup plans and are struggling to overcome the 'waste disaster'. In light of the limited knowledge available on the mutational properties and possible hosts of this newly emerged COVID-19, there is a great demand to have an efficient strategy to prevent the environment from further contamination in India. The necessity of the prevailing time is to create a more efficient, automatic, mechanized, and well-modified waste management system for handling the present situation and delaying the projected waste disaster in the near future in the era of COVID-19. The article aims to address the issues that originated from waste discharges, their potential sources along with possible sustainable solutions.


Subject(s)
COVID-19 , Waste Management , Developing Countries , Humans , Pandemics , SARS-CoV-2
3.
Front Biosci (Schol Ed) ; 10(2): 350-371, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29772563

ABSTRACT

The future supply of energy to meet growing energy demand of rapidly exapanding populations is based on wide energy resources, particularly the renewable ones. Among all resources, lignocellulosic biomasses such as agriculture, forest, and agro-industrial residues are the most abundant and easily available bioresource for biorefineries to provide fuels, chemicals, and materials. However, pretreatment of biomass is required to overcome the physical and chemical barriers that exist in the lignin-carbohydrate composite and pretreatment facilitate the entry of biocatalysts for the conversion of biomass into fermentable sugars and other by-products. Therefore, pretreatment of the biomass is necessary prerequisite for efficient hydrolysis of lignocelluloses into different type of fermentable sugars. The physiochemical, biochemical and biological pretreatment methods are considered as most promising technologies for the biomass hydrolysis and are discussed in this review article. We also discussed the recent advancements and modern trends in pretreatment methods of lignocelluloses conversion into ethanol with special focus on fermentation methods.


Subject(s)
Biomass , Ethanol/chemistry , Fermentation , Lignin/chemistry , Ammonia/chemistry , Biofuels , Biotechnology , Carbohydrates/chemistry , Enzymes/chemistry , Hydrolysis , Ions
SELECTION OF CITATIONS
SEARCH DETAIL
...