Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Curr Opin Immunol ; 71: 124-131, 2021 08.
Article in English | MEDLINE | ID: mdl-34352467

ABSTRACT

BAFF is a critical cytokine supporting the survival of mature naïve B cells, acting through the BAFFR receptor. Recent studies show that BAFF and BAFFR are also required for the survival of memory B cells, autoimmune B cells as well as malignant chronic lymphocytic leukaemia (CLL) cells. BAFFR cooperates with other receptors, notably the B cell antigen receptor (BCR), a process which is critical for the expansion of autoimmune and CLL cells. This crosstalk may be mediated by TRAF3 which interacts with BAFFR and with CD79A, a signalling subunit of the BCR and the downstream SYK kinase, inhibiting its activity. BAFF binding to BAFFR leads to degradation of TRAF3 which may relieve inhibition of SYK activity transducing signals to pathways required for B cell survival. BAFFR activates both canonical and non-canonical NF-κB signalling and both pathways play important roles in the survival of B cells and CLL cells.


Subject(s)
B-Cell Activating Factor/immunology , B-Cell Activation Factor Receptor/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , B-Lymphocytes/immunology , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Signal Transduction/immunology
2.
Elife ; 92020 10 14.
Article in English | MEDLINE | ID: mdl-33051000

ABSTRACT

WNK1, a kinase that controls kidney salt homeostasis, also regulates adhesion and migration in CD4+ T cells. Wnk1 is highly expressed in thymocytes, and since migration is important for thymocyte maturation, we investigated a role for WNK1 in mouse thymocyte development. We find that WNK1 is required for the transition of double negative (DN) thymocytes through the ß-selection checkpoint and subsequent proliferation and differentiation into double positive (DP) thymocytes. Furthermore, we show that WNK1 negatively regulates LFA1-mediated adhesion and positively regulates CXCL12-induced migration in DN thymocytes. Despite this, migration defects of WNK1-deficient thymocytes do not account for the developmental arrest. Instead, we show that in DN thymocytes WNK1 transduces pre-TCR signals via OXSR1 and STK39 kinases, and the SLC12A2 ion co-transporter that are required for post-transcriptional upregulation of MYC and subsequent proliferation and differentiation into DP thymocytes. Thus, a pathway regulating ion homeostasis is a critical regulator of thymocyte development.


Subject(s)
Cell Differentiation/genetics , Proto-Oncogene Proteins c-myc/genetics , Thymocytes/metabolism , Thymus Gland/metabolism , WNK Lysine-Deficient Protein Kinase 1/genetics , Animals , Mice , Proto-Oncogene Proteins c-myc/metabolism , WNK Lysine-Deficient Protein Kinase 1/metabolism
4.
Elife ; 72018 11 02.
Article in English | MEDLINE | ID: mdl-30387712

ABSTRACT

A subset of atypical memory B cells accumulates in malaria and several infections, autoimmune disorders and aging in both humans and mice. It has been suggested these cells are exhausted long-lived memory B cells, and their accumulation may contribute to poor acquisition of long-lasting immunity to certain chronic infections, such as malaria and HIV. Here, we generated an immunoglobulin heavy chain knock-in mouse with a BCR that recognizes MSP1 of the rodent malaria parasite, Plasmodium chabaudi. In combination with a mosquito-initiated P. chabaudi infection, we show that Plasmodium-specific atypical memory B cells are short-lived and disappear upon natural resolution of chronic infection. These cells show features of activation, proliferation, DNA replication, and plasmablasts. Our data demonstrate that Plasmodium-specific atypical memory B cells are not a subset of long-lived memory B cells, but rather short-lived activated cells, and part of a physiologic ongoing B-cell response.


Subject(s)
B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , Immunologic Memory , Merozoite Surface Protein 1/immunology , Plasmodium chabaudi/immunology , Animals , B-Lymphocyte Subsets/chemistry , B-Lymphocytes/chemistry , Flow Cytometry , Gene Knock-In Techniques , Immunoglobulin G/genetics , Malaria/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL , Rodent Diseases/immunology
5.
J Psychopharmacol ; 32(2): 174-190, 2018 02.
Article in English | MEDLINE | ID: mdl-29215943

ABSTRACT

RATIONALE: The prevalence of Alzheimer's disease is increased in people with Down syndrome. The pathology appears much earlier than in the general population, suggesting a predisposition to develop Alzheimer's disease. Down syndrome results from trisomy of human chromosome 21, leading to overexpression of possible Alzheimer's disease candidate genes, such as amyloid precursor protein gene. To better understand how the Down syndrome context results in increased vulnerability to Alzheimer's disease, we analysed amyloid-ß [25-35] peptide toxicity in the Tc1 mouse model of Down syndrome, in which ~75% of protein coding genes are functionally trisomic but, importantly, not amyloid precursor protein. RESULTS: Intracerebroventricular injection of oligomeric amyloid-ß [25-35] peptide in three-month-old wildtype mice induced learning deficits, oxidative stress, synaptic marker alterations, activation of glycogen synthase kinase-3ß, inhibition of protein kinase B (AKT), and apoptotic pathways as compared to scrambled peptide-treated wildtype mice. Scrambled peptide-treated Tc1 mice presented high levels of toxicity markers as compared to wildtype mice. Amyloid-ß [25-35] peptide injection in Tc1 mice induced significant learning deficits and enhanced glycogen synthase kinase-3ß activity in the cortex and expression of apoptotic markers in the hippocampus and cortex. Interestingly, several markers, including oxidative stress, synaptic markers, glycogen synthase kinase-3ß activity in the hippocampus and AKT activity in the hippocampus and cortex, were unaffected by amyloid-ß [25-35] peptide injection in Tc1 mice. CONCLUSIONS: Tc1 mice present several toxicity markers similar to those observed in amyloid-ß [25-35] peptide-treated wildtype mice, suggesting that developmental modifications in these mice modify their response to amyloid peptide. However, amyloid toxicity led to severe memory deficits in this Down syndrome mouse model.


Subject(s)
Alzheimer Disease/physiopathology , Amyloid beta-Peptides/toxicity , Down Syndrome/physiopathology , Memory Disorders/physiopathology , Peptide Fragments/toxicity , Alzheimer Disease/genetics , Amyloid beta-Peptides/administration & dosage , Animals , Biomarkers/metabolism , Cerebral Cortex/pathology , Disease Models, Animal , Down Syndrome/complications , Down Syndrome/genetics , Female , Glycogen Synthase Kinase 3 beta/metabolism , Hippocampus/metabolism , Injections, Intraventricular , Male , Mice , Mice, Inbred C57BL , Oxidative Stress , Peptide Fragments/administration & dosage , Severity of Illness Index
6.
Curr Opin Cell Biol ; 51: 8-14, 2018 04.
Article in English | MEDLINE | ID: mdl-29149682

ABSTRACT

The number of mature B cells is carefully controlled by signalling from receptors that support B cell survival. The best studied of these are the B cell antigen receptor (BCR) and BAFFR. Recent work has shown that signalling from these receptors is closely linked, involves the CD19 co-receptor, and leads to activation of canonical and non-canonical NF-κB pathways, ERK1, ERK2 and ERK5 MAP kinases, and PI-3 kinases. Importantly, studies show that investigation of the importance of signalling molecules in cell survival requires the use of inducible gene deletions within mature B cells. This overcomes the limitations of many earlier studies using constitutive gene deletions which were unable to distinguish between requirements for a protein in development versus survival.


Subject(s)
B-Lymphocytes/metabolism , Cell Survival/physiology , Humans , Signal Transduction
7.
Elife ; 52016 10 01.
Article in English | MEDLINE | ID: mdl-27692071

ABSTRACT

Evolutionary differences in gene regulation between humans and lower mammalian experimental systems are incompletely understood, a potential translational obstacle that is challenging to surmount in neurons, where primary tissue availability is poor. Rodent-based studies show that activity-dependent transcriptional programs mediate myriad functions in neuronal development, but the extent of their conservation in human neurons is unknown. We compared activity-dependent transcriptional responses in developing human stem cell-derived cortical neurons with those induced in developing primary- or stem cell-derived mouse cortical neurons. While activity-dependent gene-responsiveness showed little dependence on developmental stage or origin (primary tissue vs. stem cell), notable species-dependent differences were observed. Moreover, differential species-specific gene ortholog regulation was recapitulated in aneuploid mouse neurons carrying human chromosome-21, implicating promoter/enhancer sequence divergence as a factor, including human-specific activity-responsive AP-1 sites. These findings support the use of human neuronal systems for probing transcriptional responses to physiological stimuli or indeed pharmaceutical agents.


Subject(s)
Biological Evolution , Gene Expression Regulation, Developmental , Neural Stem Cells/physiology , Neurons/physiology , Transcription, Genetic , Animals , Cells, Cultured , Humans , Mice
8.
Elife ; 52016 Jan 14.
Article in English | MEDLINE | ID: mdl-26765563

ABSTRACT

Down syndrome (DS), caused by trisomy of human chromosome 21 (Hsa21), is the most common cause of congenital heart defects (CHD), yet the genetic and mechanistic causes of these defects remain unknown. To identify dosage-sensitive genes that cause DS phenotypes, including CHD, we used chromosome engineering to generate a mapping panel of 7 mouse strains with partial trisomies of regions of mouse chromosome 16 orthologous to Hsa21. Using high-resolution episcopic microscopy and three-dimensional modeling we show that these strains accurately model DS CHD. Systematic analysis of the 7 strains identified a minimal critical region sufficient to cause CHD when present in 3 copies, and showed that it contained at least two dosage-sensitive loci. Furthermore, two of these new strains model a specific subtype of atrio-ventricular septal defects with exclusive ventricular shunting and demonstrate that, contrary to current hypotheses, these CHD are not due to failure in formation of the dorsal mesenchymal protrusion.


Down syndrome is a condition caused by having an extra copy of one of the 46 chromosomes found inside human cells. Specifically, instead of two copies, people with Down syndrome are born with three copies of chromosome 21. This results in many different effects, including learning and memory problems, heart defects and Alzheimer's disease. Each of these different effects is caused by having a third copy of one or more of the approximately 230 genes found on chromosome 21. However, it is not known which of these genes cause any of these effects, and how an extra copy of the genes results in such changes. Now, Lana-Elola et al. have investigated which genes on chromosome 21 cause the heart defects seen in Down syndrome, and how those heart defects come about. This involved engineering a new strain of mouse that has an extra copy of 148 mouse genes that are very similar to 148 genes found on chromosome 21 in humans. Like people with Down syndrome, this mouse strain developed heart defects when it was an embryo. Using a series of six further mouse strains, Lana-Elola et al. then narrowed down the potential genes that, when in three copies, are needed to cause the heart defects, to a list of just 39 genes. Further experiments then showed that at least two genes within these 39 genes were required in three copies to cause the heart defects. The next step will be to identify the specific genes that actually cause the heart defects, and then work out how a third copy of these genes causes the developmental problems.


Subject(s)
Down Syndrome/pathology , Heart Defects, Congenital/genetics , Animals , Chromosome Mapping , Disease Models, Animal , Gene Dosage , Genetic Loci , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...