Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Biochem Soc Trans ; 52(2): 899-909, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38533854

ABSTRACT

RNA, a dynamic and flexible molecule with intricate three-dimensional structures, has myriad functions in disease development. Traditional methods, such as X-ray crystallography and nuclear magnetic resonance, face limitations in capturing real-time, single-molecule dynamics crucial for understanding RNA function. This review explores the transformative potential of single-molecule force spectroscopy using optical tweezers, showcasing its capability to directly probe time-dependent structural rearrangements of individual RNA molecules. Optical tweezers offer versatility in exploring diverse conditions, with the potential to provide insights into how environmental changes, ligands and RNA-binding proteins impact RNA behaviour. By enabling real-time observations of large-scale structural dynamics, optical tweezers emerge as an invaluable tool for advancing our comprehension of RNA structure and function. Here, we showcase their application in elucidating the dynamics of RNA elements in virology, such as the pseudoknot governing ribosomal frameshifting in SARS-CoV-2.


Subject(s)
COVID-19 , Nucleic Acid Conformation , Optical Tweezers , SARS-CoV-2 , Single Molecule Imaging , SARS-CoV-2/genetics , Single Molecule Imaging/methods , COVID-19/virology , Humans , RNA, Viral/chemistry , RNA/chemistry , Frameshifting, Ribosomal , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism
2.
Biophys J ; 122(17): 3458-3468, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37515325

ABSTRACT

The heat shock protein 90 (Hsp90) is a molecular chaperone, which plays a key role in eukaryotic protein homeostasis. Co-chaperones assist Hsp90 in client maturation and in regulating essential cellular processes such as cell survival, signal transduction, gene regulation, hormone signaling, and neurodegeneration. Aha1 (activator of Hsp90 ATPase) is a unique co-chaperone known to stimulate the ATP hydrolysis of Hsp90, but the mechanism of their interaction is still unclear. In this report, we show that one or two Aha1 molecules can bind to one Hsp90 dimer and that the binding stoichiometry affects Hsp90's conformation, kinetics, ATPase activity, and stability. In particular, a coordination of two Aha1 molecules can be seen in stimulating the ATPase activity of Hsp90 and the unfolding of the middle domain, whereas the conformational equilibrium and kinetics are hardly affected by the stoichiometry of bound Aha1. Altogether, we show a regulation mechanism through the stoichiometry of Aha1 going far beyond a regulation of Hsp90's conformation.


Subject(s)
HSP90 Heat-Shock Proteins , Molecular Chaperones , Humans , Molecular Chaperones/metabolism , HSP90 Heat-Shock Proteins/metabolism , Adenosine Triphosphatases/metabolism , Molecular Conformation
3.
Methods Mol Biol ; 2478: 401-425, 2022.
Article in English | MEDLINE | ID: mdl-36063329

ABSTRACT

The heat shock protein 90 (Hsp90) family of chaperones are well-known, highly important components of the cellular systems which regulate protein homeostasis. Essential in eukaryotes, Hsp90s is also found in prokaryotes, including archaea. Hsp90 is a dimeric protein, with each monomer consisting of three separate structural domains, and undergoes large conformational changes as part of its functional cycle. This cycle is driven by interactions with nucleotides, cochaperone proteins, client proteins and allosteric effects enacted by these and by posttranslational modifications. All of these influence the rate and degree of the opening and closing of the dimer as well as the relative domain orientations and its overall rigidity. Optical tweezers, which can access many of these functionally important conformational changes, therefore provide a unique tool for the study of this large and complex molecular chaperone. Here, we provide protocols for the design and implementation of different Hsp90 constructs and optical tweezers experiments for addressing the many open questions about the function of this important molecular chaperone.


Subject(s)
HSP90 Heat-Shock Proteins , Optical Tweezers , HSP90 Heat-Shock Proteins/metabolism , Humans , Molecular Chaperones/metabolism , Protein Conformation
4.
ACS Omega ; 7(30): 26040-26046, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35936408

ABSTRACT

Single-molecule nanopore electrophysiology is an emerging technique for the detection of analytes in aqueous solutions with high sensitivity. These detectors have proven applicable for the enzyme-assisted sequencing of oligonucleotides. There has recently been an increased interest in the use of nanopores for the fingerprinting of peptides and proteins, referred to as single-molecule nanopore spectrometry. However, the analysis of the resulting electrophysiology traces remains complicated due to the fast unassisted translocation of such analytes, usually in the order of micro- to milliseconds, and the small ion current signal produced (in the picoampere range). Here, we present the application of a generalized normal distribution function (gNDF) for the characterization of short-lived ion current signals (blockades). We show that the gNDF can be used to determine if the observed blockades have adequate time to reach their maximum current plateau while also providing a description of each blockade based on the open pore current (I O), the difference caused by the pore blockade (ΔI B), the position in time (µ), the standard deviation (σ), and a shape parameter (ß), leaving only the noise component. In addition, this method allows the estimation of an ideal range of low-pass filter frequencies that contains maximum information with minimal noise. In summary, we show a parameter-free and generalized method for the analysis of short-lived ion current blockades, which facilitates single-molecule nanopore spectrometry with minimal user bias.

5.
J Phys Chem Lett ; 13(30): 7058-7064, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35900133

ABSTRACT

Protein aggregation into amyloid fibrils has been observed in several pathological conditions and exploited in nanotechnology. It is also key in several biochemical processes. In this work, we show that ionic liquids (ILs), a vast class of organic electrolytes, can finely tune amyloid properties, opening a new landscape in basic science and applications. The representative case of ethylammonium nitrate (EAN) and tetramethyl-guanidinium acetate (TMGA) ILs on lysozyme is considered. First, atomic force microscopy has shown that the addition of EAN and TMGA leads to thicker and thinner amyloid fibrils of greater and lower electric potential, respectively, with diameters finely tunable by IL concentration. Optical tweezers and neutron scattering have shed light on their mechanism of action. TMGA interacts with the protein hydration layer only, making the relaxation dynamics of these water molecules faster. EAN interacts directly with the protein instead, making it mechanically unstable and slowing down its relaxation dynamics.


Subject(s)
Ionic Liquids , Acetates , Amyloid/chemistry , Antiviral Agents , Guanidine , Ionic Liquids/chemistry , Muramidase/chemistry , Quaternary Ammonium Compounds
6.
Mol Syst Biol ; 18(4): e10822, 2022 04.
Article in English | MEDLINE | ID: mdl-35362256

ABSTRACT

Based on recent findings indicating that metabolism might be governed by a limit on the rate at which cells can dissipate Gibbs energy, in this Perspective, we propose a new mechanism of how metabolic activity could globally regulate biomolecular processes in a cell. Specifically, we postulate that Gibbs energy released in metabolic reactions is used to perform work, allowing enzymes to self-propel or to break free from supramolecular structures. This catalysis-induced enzyme movement will result in increased intracellular motion, which in turn can compromise biomolecular functions. Once the increased intracellular motion has a detrimental effect on regulatory mechanisms, this will establish a feedback mechanism on metabolic activity, and result in the observed thermodynamic limit. While this proposed explanation for the identified upper rate limit on cellular Gibbs energy dissipation rate awaits experimental validation, it offers an intriguing perspective of how metabolic activity can globally affect biomolecular functions and will hopefully spark new research.


Subject(s)
Thermodynamics
7.
Nanomaterials (Basel) ; 11(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34578744

ABSTRACT

The mechanical properties of proteins can be studied with single molecule force spectroscopy (SMFS) using optical tweezers, atomic force microscopy and magnetic tweezers. It is common to utilize a flexible linker between the protein and trapped probe to exclude short-range interactions in SMFS experiments. One of the most prevalent linkers is DNA due to its well-defined properties, although attachment strategies between the DNA linker and protein or probe may vary. We will therefore provide a general overview of the currently existing non-covalent and covalent bioconjugation strategies to site-specifically conjugate DNA-linkers to the protein of interest. In the search for a standardized conjugation strategy, considerations include their mechanical properties in the context of SMFS, feasibility of site-directed labeling, labeling efficiency, and costs.

8.
Nat Commun ; 10(1): 3626, 2019 08 09.
Article in English | MEDLINE | ID: mdl-31399574

ABSTRACT

The molecular chaperone Hsp90 is an important regulator of proteostasis. It has remained unclear why S. cerevisiae possesses two Hsp90 isoforms, the constitutively expressed Hsc82 and the stress-inducible Hsp82. Here, we report distinct differences despite a sequence identity of 97%. Consistent with its function under stress conditions, Hsp82 is more stable and refolds more efficiently than Hsc82. The two isoforms also differ in their ATPases and conformational cycles. Hsc82 is more processive and populates closed states to a greater extent. Variations in the N-terminal ATP-binding domain modulate its dynamics and conformational cycle. Despite these differences, the client interactomes are largely identical, but isoform-specific interactors exist both under physiological and heat shock conditions. Taken together, changes mainly in the N-domain create a stress-specific, more resilient protein with a shifted activity profile. Thus, the precise tuning of the Hsp90 isoforms preserves the basic mechanism but adapts it to specific needs.


Subject(s)
HSP90 Heat-Shock Proteins/chemistry , Molecular Chaperones/chemistry , Protein Isoforms/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/physiology , Heat-Shock Response/physiology , Ligands , Models, Molecular , Molecular Chaperones/metabolism , Protein Binding , Protein Conformation , Protein Folding , Protein Isoforms/metabolism , Protein Stability , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment , Stress, Physiological
9.
Methods Mol Biol ; 1958: 263-282, 2019.
Article in English | MEDLINE | ID: mdl-30945223

ABSTRACT

Three-dimensional structures of proteins are a source of fascination for scientists, due to the beauty of their sequence-encoded architectures and their highly diverse range of functions. These functions include acting as powerful catalysts, signal receptors, and versatile molecular motors as well as being building blocks for macroscopic structures, thus defining the shape of multicellular organisms. How protein structure is organized and assembled at the sub-nanometer scale is of great current interest. Specifically, the discovery of stable substructures and supersecondary structures has inspired research into their potential use in rationally engineered proteins with tailor-made properties. Here, we show how the search for stable substructures in large proteins can benefit from recent advances in single-molecule force spectroscopy using highly sensitive dual-beam optical tweezers. Our chapter provides a step-by-step description of the experimental workflow for (1) preparing proteins for mechanical interrogation, (2) interpreting the data, and (3) avoiding the most commonly occurring mistakes.


Subject(s)
Amino Acid Motifs , Molecular Biology/methods , Molecular Conformation , Proteins/chemistry , Catalysis , Protein Engineering/methods , Proteins/genetics
10.
IEEE Pulse ; 10(2): 14-19, 2019.
Article in English | MEDLINE | ID: mdl-31021752

ABSTRACT

The 2018 Nobel Prize in Physics was awarded to three scientists in the field of laser science: Dr. Arthur Ashkin for his invention of the optical tweezers and their application to biological systems, and Dr. Gérard Mourou and Dr. Donna Strickland for their method of generating high-intensity, ultrashort optical pulses. The awards integrate the far reaches of time and intensity scales in laser technologies, from the extremely high-intensity chirped pulse lasers (by Mourou and Strickland) to the ultralow-power beams (by Ashkin) that are capable of handling delicate biological objects and molecules [1], [2]. The IEEE family is indeed delighted to see two of its Life Fellows, Arthur Ashkin and Gérard Mourou, as co-recipients of the awards from the Royal Swedish Academy of Science. Mourou is a past recipient of the IEEE Photonics Quantum Electronics Award and the IEEE David Sarnoff Award. Strickland has been an active author in the IEEE Journal of Quantum Electronics and IEEE Journal of Selected Topics in Quantum Electronics.


Subject(s)
Nobel Prize , Optics and Photonics , Humans
11.
J Phys Chem B ; 122(49): 11373-11380, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30179494

ABSTRACT

Hsp90 is an essential molecular chaperone, which has to be in a dimeric form for its correct function. While the affinity of the dimer has previously been measured, little is known about how it associates and dissociates and the factors that influence this. We perform an in-depth single molecule characterization of the C-terminal association and dissociation of Hsp90. We find more than one dissociation rate, indicating that the dimer has a stable and an unstable state. Furthermore, we find that the stability of the C-terminal association is dependent on the presence of ATP, despite the C-terminal dimerization interface being distal to the catalytic site.


Subject(s)
HSP90 Heat-Shock Proteins/chemistry , Nucleotides/chemistry , Adenosine Triphosphatases/chemistry , Cloning, Molecular , Dimerization , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Optical Tweezers , Protein Folding , Protein Stability
12.
Biochemistry ; 57(36): 5301-5314, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30110143

ABSTRACT

Copper amine oxidases (CuAOs) are metalloenzymes that reduce molecular oxygen to hydrogen peroxide during catalytic turnover of primary amines. In addition to Cu2+ in the active site, two peripheral calcium sites, ∼32 Šfrom the active site, have roles in Escherichia coli amine oxidase (ECAO). The buried Ca2+ (Asp533, Leu534, Asp535, Asp678, and Ala679) is essential for full-length protein production, while the surface Ca2+ (Glu573, Tyr667, Asp670, and Glu672) modulates biogenesis of the 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor. The E573Q mutation at the surface site prevents calcium binding and TPQ biogenesis. However, TPQ biogenesis can be restored by a suppressor mutation (I342F) in the proposed oxygen delivery channel to the active site. While supporting TPQ biogenesis (∼60% WTECAO TPQ), I342F/E573Q has almost no amine oxidase activity (∼4.6% WTECAO activity). To understand how these long-range mutations have major effects on TPQ biogenesis and catalysis, we employed ultraviolet-visible spectroscopy, steady-state kinetics, inhibition assays, and X-ray crystallography. We show that the surface metal site controls the equilibrium (disproportionation) of the Cu2+-substrate reduced TPQ (TPQAMQ) Cu+-TPQ semiquinone (TPQSQ) couple. Removal of the calcium ion from this site by chelation or mutagenesis shifts the equilibrium to Cu2+-TPQAMQ or destabilizes Cu+-TPQSQ. Crystal structure analysis shows that TPQ biogenesis is stalled at deprotonation in the Cu2+-tyrosinate state. Our findings support WTECAO using the inner sphere electron transfer mechanism for oxygen reduction during catalysis, and while a Cu+-tyrosyl radical intermediate is not essential for TPQ biogenesis, it is required for efficient biogenesis.


Subject(s)
Amine Oxidase (Copper-Containing)/chemistry , Amine Oxidase (Copper-Containing)/metabolism , Copper/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Reactive Oxygen Species/metabolism , Amine Oxidase (Copper-Containing)/genetics , Binding Sites , Catalysis , Catalytic Domain , Crystallography, X-Ray , Escherichia coli Proteins/genetics , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Protein Conformation , Reactive Oxygen Species/chemistry
13.
Structure ; 26(1): 96-105.e4, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29276035

ABSTRACT

The heat-shock protein 90 (Hsp90) molecular chaperones are highly conserved across species. However, their dynamic properties can vary significantly from organism to organism. Here we used high-precision optical tweezers to analyze the mechanical properties and folding of different Hsp90 orthologs, namely bacterial Hsp90 (HtpG) and Hsp90 from the endoplasmic reticulum (ER) (Grp94), as well as from the cytosol of the eukaryotic cell (Hsp82). We find that the folding rates of Hsp82 and HtpG are similar, while the folding of Grp94 is slowed down by misfolding of the N-terminal domain. Furthermore, the domain interactions mediated by the charged linker, involved in the conformational cycles of all three orthologs, are much stronger for Grp94 than for Hsp82, keeping the N-terminal domain and the middle domain in close proximity. Thus, the ER resident Hsp90 ortholog differs from the cytosolic counterparts in basic functionally relevant structural properties.


Subject(s)
Cytosol/chemistry , Endoplasmic Reticulum/chemistry , Escherichia coli Proteins/chemistry , HSP70 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/chemistry , Membrane Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Amino Acid Sequence , Animals , Cloning, Molecular , Crystallography, X-Ray , Cytosol/metabolism , Dogs , Endoplasmic Reticulum/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Kinetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Optical Tweezers , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Folding , Protein Interaction Domains and Motifs , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Spectrum Analysis/methods , Thermodynamics
14.
Langmuir ; 32(29): 7392-402, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27338140

ABSTRACT

Proteins from organisms that have adapted to environmental extremes provide attractive systems to explore and determine the origins of protein stability. Improved hydrophobic core packing and decreased loop-length flexibility can increase the thermodynamic stability of proteins from hyperthermophilic organisms. However, their impact on protein mechanical stability is not known. Here, we use protein engineering, biophysical characterization, single-molecule force spectroscopy (SMFS), and molecular dynamics (MD) simulations to measure the effect of altering hydrophobic core packing on the stability of the cold shock protein TmCSP from the hyperthermophilic bacterium Thermotoga maritima. We make two variants of TmCSP in which a mutation is made to reduce the size of aliphatic groups from buried hydrophobic side chains. In the first, a mutation is introduced in a long loop (TmCSP L40A); in the other, the mutation is introduced on the C-terminal ß-strand (TmCSP V62A). We use MD simulations to confirm that the mutant TmCSP L40A shows the most significant increase in loop flexibility, and mutant TmCSP V62A shows greater disruption to the core packing. We measure the thermodynamic stability (ΔGD-N) of the mutated proteins and show that there is a more significant reduction for TmCSP L40A (ΔΔG = 63%) than TmCSP V62A (ΔΔG = 47%), as might be expected on the basis of the relative reduction in the size of the side chain. By contrast, SMFS measures the mechanical stability (ΔG*) and shows a greater reduction for TmCSP V62A (ΔΔG* = 8.4%) than TmCSP L40A (ΔΔG* = 2.5%). While the impact on the mechanical stability is subtle, the results demonstrate the power of tuning noncovalent interactions to modulate both the thermodynamic and mechanical stability of a protein. Such understanding and control provide the opportunity to design proteins with optimized thermodynamic and mechanical properties.


Subject(s)
Bacterial Proteins/chemistry , Thermodynamics , Thermotoga maritima/chemistry , Hydrophobic and Hydrophilic Interactions , Protein Domains , Protein Stability , Protein Structure, Secondary
15.
Soft Matter ; 12(10): 2688-99, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26809452

ABSTRACT

Proteins from extremophilic organisms provide excellent model systems to determine the role of non-covalent interactions in defining protein stability and dynamics as well as being attractive targets for the development of robust biomaterials. Hyperthermophilic proteins have a prevalence of salt bridges, relative to their mesophilic homologues, which are thought to be important for enhanced thermal stability. However, the impact of salt bridges on the mechanical properties of proteins is far from understood. Here, a combination of protein engineering, biophysical characterisation, single molecule force spectroscopy (SMFS) and molecular dynamics (MD) simulations directly investigates the role of salt bridges in the mechanical stability of two cold shock proteins; BsCSP from the mesophilic organism Bacillus subtilis and TmCSP from the hyperthermophilic organism Thermotoga maritima. Single molecule force spectroscopy shows that at ambient temperatures TmCSP is mechanically stronger yet, counter-intuitively, its native state can withstand greater deformation before unfolding (i.e. it is mechanically soft) compared with BsCSP. MD simulations were used to identify the location and quantify the population of salt bridges, and reveal that TmCSP contains a larger number of highly occupied salt bridges than BsCSP. To test the hypothesis that salt-bridges endow these mechanical properties on the hyperthermophilic CSP, a charged triple mutant (CTM) variant of BsCSP was generated by grafting an ionic cluster from TmCSP into the BsCSP scaffold. As expected CTM is thermodynamically more stable and mechanically softer than BsCSP. We show that a grafted ionic cluster can increase the mechanical softness of a protein and speculate that it could provide a mechanical recovery mechanism and that it may be a design feature applicable to other proteins.


Subject(s)
Bacillus subtilis/chemistry , Bacterial Proteins/chemistry , Cold Shock Proteins and Peptides/chemistry , Salts/chemistry , Thermotoga maritima/chemistry , Amino Acid Sequence , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Ions/chemistry , Models, Molecular , Molecular Dynamics Simulation , Protein Stability , Protein Unfolding , Thermodynamics , Thermotoga maritima/genetics
16.
ACS Nano ; 9(9): 8811-21, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26284289

ABSTRACT

Single-molecule force spectroscopy by atomic force microscopy exploits the use of multimeric protein constructs, namely, polyproteins, to decrease the impact of nonspecific interactions, to improve data accumulation, and to allow the accommodation of benchmarking reference domains within the construct. However, methods to generate such constructs are either time- and labor-intensive or lack control over the length or the domain sequence of the obtained construct. Here, we describe an approach that addresses both of these shortcomings that uses Gibson assembly (GA) to generate a defined recombinant polyprotein rapidly using linker sequences. To demonstrate the feasibility of this approach, we used GA to make a polyprotein composed of alternating domains of I27 and TmCsp, (I27-TmCsp)3-I27)(GA), and showed the mechanical fingerprint, mechanical strength, and pulling speed dependence are the same as an analogous polyprotein constructed using the classical approach. After this benchmarking, we exploited this approach to facilitiate the mechanical characterization of POTRA domain 2 of BamA from E. coli (EcPOTRA2) by assembling the polyprotein (I27-EcPOTRA2)3-I27(GA). We show that, as predicted from the α + ß topology, EcPOTRA2 domains are mechanically robust over a wide range of pulling speeds. Furthermore, we identify a clear correlation between mechanical robustness and brittleness for a range of other α + ß proteins that contain the structural feature of proximal terminal ß-strands in parallel geometry. We thus demonstrate that the GA approach is a powerful tool, as it circumvents the usual time- and labor-intensive polyprotein production process and allows for rapid production of new constructs for single-molecule studies. As shown for EcPOTRA2, this approach allows the exploration of the mechanical properties of a greater number of proteins and their variants. This improves our understanding of the relationship between structure and mechanical strength, increasing our ability to design proteins with tailored mechanical properties.


Subject(s)
Peptides/chemistry , Polyproteins/chemistry , Protein Multimerization , Escherichia coli/chemistry , Microscopy, Atomic Force , Polyproteins/ultrastructure , Protein Structure, Tertiary
17.
Biochem Soc Trans ; 43(2): 179-85, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25849914

ABSTRACT

Extremophiles are organisms which survive and thrive in extreme environments. The proteins from extremophilic single-celled organisms have received considerable attention as they are structurally stable and functionally active under extreme physical and chemical conditions. In this short article, we provide an introduction to extremophiles, the structural adaptations of proteins from extremophilic organisms and the exploitation of these proteins in industrial applications. We provide a review of recent developments which have utilized single molecule force spectroscopy to mechanically manipulate proteins from extremophilic organisms and the information which has been gained about their stability, flexibility and underlying energy landscapes.


Subject(s)
Adaptation, Physiological/genetics , Energy Metabolism/genetics , Environment , Proteins/chemistry , Protein Stability , Proteins/genetics , Proteins/metabolism , Spectrum Analysis , Sulfolobus acidocaldarius/chemistry , Sulfolobus acidocaldarius/metabolism
18.
Article in English | MEDLINE | ID: mdl-25679645

ABSTRACT

Single-molecule force spectroscopy using an atomic force microscope (AFM) can be used to measure the average unfolding force of proteins in a constant velocity experiment. In combination with Monte Carlo simulations and through the application of the Zhurkov-Bell model, information about the parameters describing the underlying unfolding energy landscape of the protein can be obtained. Using this approach, we have completed protein unfolding experiments on the polyprotein (I27)(5) over a range of pulling velocities. In agreement with previous work, we find that the observed number of protein unfolding events observed in each approach-retract cycle varies between one and five, due to the nature of the interactions between the polyprotein, the AFM tip, and the substrate, and there is an unequal unfolding probability distribution. We have developed a Monte Carlo simulation that incorporates the impact of this unequal unfolding probability distribution on the median unfolding force and the calculation of the protein unfolding energy landscape parameters. These results show that while there is a significant, unequal unfolding probability distribution, the unfolding energy landscape parameters obtained from use of the Zhurkov-Bell model are not greatly affected. This result is important because it demonstrates that the minimum acceptance criteria typically used in force extension experiments are justified and do not skew the calculation of the unfolding energy landscape parameters. We further validate this approach by determining the error in the energy landscape parameters for two extreme cases, and we provide suggestions for methods that can be employed to increase the level of accuracy in single-molecule experiments using polyproteins.


Subject(s)
Monte Carlo Method , Protein Unfolding , Proteins/chemistry , Probability , Thermodynamics
19.
Phys Chem Chem Phys ; 15(38): 15767-80, 2013 Oct 14.
Article in English | MEDLINE | ID: mdl-23989058

ABSTRACT

The successful integration of proteins into bionanomaterials with specific and desired functions requires an accurate understanding of their material properties. Two such important properties are their mechanical stability and malleability. While single molecule manipulation techniques now routinely provide access to these, there is a need to move towards predictive tools that can rationally identify proteins with desired material properties. We provide a comprehensive review of the available experimental data on the single molecule characterisation of proteins using the atomic force microscope. We uncover a number of empirical relationships between the measured mechanical stability of a protein and its malleability, which provide a set of simple tools that might be employed to estimate properties of previously uncharacterised proteins.


Subject(s)
Proteins/chemistry , Microscopy, Atomic Force , Nanostructures/chemistry , Protein Denaturation , Protein Stability , Protein Structure, Tertiary , Proteins/metabolism
20.
J Phys Chem B ; 117(6): 1819-26, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-23293964

ABSTRACT

Single-molecule force spectroscopy has emerged as a powerful approach to examine the stability and dynamics of single proteins. We have completed force extension experiments on the small cold shock protein B from Thermotoga maritima, using a specially constructed chimeric polyprotein. The protein's simple topology, which is distinct from the mechanically well-characterized ß-grasp and immunoglobulin (Ig)-like folds, in addition to the wide range of structural homologues resulting from its ancient origin, provides an attractive model protein for single-molecule force spectroscopy studies. We have determined that the protein has mechanical stability, unfolding at greater than 70 pN at a pulling velocity of 100 nm s(-1). We reveal features of the unfolding energy landscape by measuring the dependence of the mechanical stability on pulling velocity, in combination with Monte Carlo simulations. We show that the cold shock protein has mechanically robust, yet malleable, features that may be important in providing the protein with stability and flexibility to function over a range of environmental conditions. These results provide insights into the relationship between the secondary structure and topology of a protein and its mechanical strength. This lays the foundation for the investigation of the effects of changes in environmental conditions on the mechanical and dynamic properties of cold shock proteins.


Subject(s)
Cold Shock Proteins and Peptides/chemistry , Cold Shock Proteins and Peptides/genetics , Cold Shock Proteins and Peptides/metabolism , Escherichia coli/metabolism , Microscopy, Atomic Force , Monte Carlo Method , Protein Unfolding , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Spectrometry, Fluorescence , Thermodynamics , Thermotoga maritima/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...