Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Front Bioeng Biotechnol ; 12: 1396405, 2024.
Article in English | MEDLINE | ID: mdl-38803845

ABSTRACT

Stem cells have been widely applied in regenerative and therapeutic medicine for their unique regenerative properties. Although much research has shown their potential, it remains tricky in directing stem cell differentiation. The advancement of genetic and therapeutic technologies, however, has facilitated this issue through development of design molecules. These molecules are designed to overcome the drawbacks previously faced, such as unexpected differentiation outcomes and insufficient migration of endogenous or exogenous MSCs. Here, we introduced aptamer, bacteriophage, and biological vectors as design molecules and described their characteristics. The methods of designing/developing discussed include various Systematic Evolution of Ligands by Exponential Enrichment (SELEX) procedures, in silico approaches, and non-SELEX methods for aptamers, and genetic engineering methods such as homologous recombination, Bacteriophage Recombineering of Electroporated DNA (BRED), Bacteriophage Recombineering with Infectious Particles (BRIP), and genome rebooting for bacteriophage. For biological vectors, methods such as alternate splicing, multiple promoters, internal ribosomal entry site, CRISPR-Cas9 system and Cre recombinase mediated recombination were used to design viral vectors, while non-viral vectors like exosomes are generated through parental cell-based direct engineering. Besides that, we also discussed the pros and cons, and applications of each design molecule in directing stem cell differentiation to illustrate their great potential in stem cells research. Finally, we highlighted some safety and efficacy concerns to be considered for future studies.

2.
Front Immunol ; 15: 1384039, 2024.
Article in English | MEDLINE | ID: mdl-38726000

ABSTRACT

Chimeric antigen receptor-natural killer (CAR-NK) cell therapy is a novel immunotherapy targeting cancer cells via the generation of chimeric antigen receptors on NK cells which recognize specific cancer antigens. CAR-NK cell therapy is gaining attention nowadays owing to the ability of CAR-NK cells to release potent cytotoxicity against cancer cells without side effects such as cytokine release syndrome (CRS), neurotoxicity and graft-versus-host disease (GvHD). CAR-NK cells do not require antigen priming, thus enabling them to be used as "off-the-shelf" therapy. Nonetheless, CAR-NK cell therapy still possesses several challenges in eliminating cancer cells which reside in hypoxic and immunosuppressive tumor microenvironment. Therefore, this review is envisioned to explore the current advancements and limitations of CAR-NK cell therapy as well as discuss strategies to overcome the challenges faced by CAR-NK cell therapy. This review also aims to dissect the current status of clinical trials on CAR-NK cells and future recommendations for improving the effectiveness and safety of CAR-NK cell therapy.


Subject(s)
Immunotherapy, Adoptive , Killer Cells, Natural , Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Killer Cells, Natural/immunology , Neoplasms/therapy , Neoplasms/immunology , Animals , Tumor Microenvironment/immunology , Clinical Trials as Topic , Antigens, Neoplasm/immunology
3.
Curr Mol Med ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38803176

ABSTRACT

The human leukocyte antigen (HLA, also known as the major histocompatibility complex or MHC) system, is responsible for immune monitoring of the intracellular proteome of all nucleated cells. The presentation of antigen peptides separates malignant or infected cells from their healthy counterparts and forms aberrant cells tagged as the foundation for identification. Therefore, peptide-MHC molecules can give potential diagnostic targets for cancer or infection. TCR-like antibodies recognize specific peptides that bind to MHC molecules, allowing them to target Such inaccessible cytoplasmic or nuclear tumors or virus-associated antigens. It binds to MHC, presenting peptides found on the surface of target cells. These antibodies have shown promising clinical applications in diagnosing and imaging cancer and infected cells. This review presents the current situation of TCR-like antibodies and its prospects for application in the field of intracellular antigen diagnostics. It also lists the potential application targets of TCR, like antibodies in various disease diagnoses, providing valuable information for developing diagnostic reagents and selecting targets in the future.

4.
Cell Tissue Res ; 395(3): 227-250, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244032

ABSTRACT

The promising field of regenerative medicine is thrilling as it can repair and restore organs for various debilitating diseases. Mesenchymal stem cells are one of the main components in regenerative medicine that work through the release of secretomes. By adopting the use of the secretome in cell-free-based therapy, we may be able to address the challenges faced in cell-based therapy. As one of the components of cell-free-based therapy, secretome has the advantage of a better safety and efficacy profile than mesenchymal stem cells. However, secretome has its challenges that need to be addressed, such as its bioprocessing methods that may impact the secretome content and its mechanisms of action in clinical settings. Effective and standardization of bioprocessing protocols are important to ensure the supply and sustainability of secretomes for clinical applications. This may eventually impact its commercialization and marketability. In this review, the bioprocessing methods and their impacts on the secretome profile and treatment are discussed. This improves understanding of its fundamental aspects leading to potential clinical applications.


Subject(s)
Mesenchymal Stem Cells , Secretome , Humans , Regenerative Medicine/methods , Cell- and Tissue-Based Therapy
5.
Acta Trop ; 251: 107122, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246399

ABSTRACT

Strongyloidiasis, caused by the nematode Strongyloides stercoralis, remains a threat to global public health, and a vaccine would be useful to control the disease, especially in developing countries. This study aimed to evaluate the efficacy of recombinant proteins, A133 and Ss-IR, as potential vaccine candidates against strongyloidiasis by investigating the humoral and cellular immune responses in immunized mice. Respective antigens were adjuvanted with Complete Freund's Adjuvant (prime) and Incomplete Freund's Adjuvant (boost) and administered intraperitoneally (prime) and subcutaneously (boost) to female BALB/c mice. For antigen-only doses, only antigens were injected without adjuvants. Altogether, 1 prime dose, 4 booster doses, and 2 antigen-only doses were administered successively. ELISAs were conducted to assess the antibody responses, along with flow cytometry and cytokine ELISA to elucidate the cellular immune responses. Results showed that A133 and Ss-IR induced the production of IgG1 and IgG2a, with A133 generating more robust IgG2a responses than Ss-IR. Flow cytometry findings indicated that effector CD8+T-cells and memory B-cells activity were upregulated significantly for A133 only, whereas cytokine ELISA demonstrated that a Th1/Th2/Th17 mixed cell responses were triggered upon vaccination with either antigen. This preliminary study illustrated the good potential of recombinant A133 and Ss-IR as vaccine candidates against S. stercoralis. It provided information on the probable immune mechanism involved in host defence and the elicitation of protection against S. stercoralis.


Subject(s)
Strongyloides stercoralis , Strongyloidiasis , Vaccines , Female , Animals , Mice , Strongyloides stercoralis/genetics , Immunoglobulin G , Strongyloidiasis/prevention & control , Immunization , Vaccination , Adjuvants, Immunologic , Cytokines/metabolism , Mice, Inbred BALB C
6.
Front Med (Lausanne) ; 10: 1195374, 2023.
Article in English | MEDLINE | ID: mdl-37547615

ABSTRACT

The vital role of the intestines as the main site for the digestion and absorption of nutrients for the body continues subconsciously throughout one's lifetime, but underneath all the complex processes lie the intestinal stem cells and the gut microbiota that work together to maintain the intestinal epithelium. Intestinal stem cells (ISC) are multipotent stem cells from which all intestinal epithelial cells originate, and the gut microbiota refers to the abundant collection of various microorganisms that reside in the gastrointestinal tract. Both reside in the intestines and have many mechanisms and pathways in place with the ultimate goal of co-managing human gastrointestinal tract homeostasis. Based on the abundance of research that is focused on either of these two topics, this suggests that there are many methods by which both players affect one another. Therefore, this review aims to address the relationship between ISC and the gut microbiota in the context of regenerative medicine. Understanding the principles behind both aspects is therefore essential in further studies in the field of regenerative medicine by making use of the underlying designed mechanisms.

7.
Front Mol Neurosci ; 16: 1173433, 2023.
Article in English | MEDLINE | ID: mdl-37602192

ABSTRACT

Neurodegenerative diseases are adult-onset neurological conditions that are notoriously difficult to model for drug discovery and development because most models are unable to accurately recapitulate pathology in disease-relevant cells, making it extremely difficult to explore the potential mechanisms underlying neurodegenerative diseases. Therefore, alternative models of human or animal cells have been developed to bridge the gap and allow the impact of new therapeutic strategies to be anticipated more accurately by trying to mimic neuronal and glial cell interactions and many more mechanisms. In tandem with the emergence of human-induced pluripotent stem cells which were first generated in 2007, the accessibility to human-induced pluripotent stem cells (hiPSC) derived from patients can be differentiated into disease-relevant neurons, providing an unrivaled platform for in vitro modeling, drug testing, and therapeutic strategy development. The recent development of three-dimensional (3D) brain organoids derived from iPSCs as the best alternative models for the study of the pathological features of neurodegenerative diseases. This review highlights the overview of current iPSC-based disease modeling and recent advances in the development of iPSC models that incorporate neurodegenerative diseases. In addition, a summary of the existing brain organoid-based disease modeling of Alzheimer's disease was presented. We have also discussed the current methodologies of regional specific brain organoids modeled, its potential applications, emphasizing brain organoids as a promising platform for the modeling of patient-specific diseases, the development of personalized therapies, and contributing to the design of ongoing or future clinical trials on organoid technologies.

8.
Mol Biol Rep ; 50(5): 4653-4664, 2023 May.
Article in English | MEDLINE | ID: mdl-37014570

ABSTRACT

Cancer is one of the leading causes of mortality worldwide; nearly 10 million people died from it in 2020. The high mortality rate results from the lack of effective screening approaches where early detection cannot be achieved, reducing the chance of early intervention to prevent cancer development. Non-invasive and deep-tissue imaging is useful in cancer diagnosis, contributing to a visual presentation of anatomy and physiology in a rapid and safe manner. Its sensitivity and specificity can be enhanced with the application of targeting ligands with the conjugation of imaging probes. Phage display is a powerful technology to identify antibody- or peptide-based ligands with effective binding specificity against their target receptor. Tumour-targeting peptides exhibit promising results in molecular imaging, but the application is limited to animals only. Modern nanotechnology facilitates the combination of peptides with various nanoparticles due to their superior characteristics, rendering novel strategies in designing more potent imaging probes for cancer diagnosis and targeting therapy. In the end, a myriad of peptide candidates that aimed for different cancers diagnosis and imaging in various forms of research were reviewed.


Subject(s)
Bacteriophages , Neoplasms , Animals , Peptide Library , Peptides/chemistry , Neoplasms/diagnostic imaging , Molecular Imaging , Technology
9.
Article in English | MEDLINE | ID: mdl-36674401

ABSTRACT

(1) Background: The assessment of vaccine effectiveness against the Omicron variant is vital in the fight against COVID-19, but research on booster vaccine efficacy using nationwide data was lacking at the time of writing. This study investigates the effectiveness of booster doses on the Omicron wave in Malaysia against COVID-19 infections and deaths; (2) Methods: This study uses nationally representative data on COVID-19 from 1 January to 31 March 2022, when the Omicron variant was predominant in Malaysia. Daily new infections, deaths, ICU utilization and Rt values were compared. A screening method was used to predict the vaccine effectiveness against COVID-19 infections, whereas logistic regression was used to estimate vaccine effectiveness against COVID-19-related deaths, with efficacy comparison between AZD1222, BNT162b2 and CoronaVac; (3) Results: Malaysia's Omicron wave started at the end of January 2022, peaking on 5 March 2022. At the time of writing, statistics for daily new deaths, ICU utilization, and effective reproductive values (Rt) were showing a downtrend. Boosted vaccination is 95.4% (95% CI: 95.4, 95.4) effective in curbing COVID-19 infection, compared to non-boosted vaccination, which is 87.2% (95% CI: 87.2, 87.2). For symptomatic infection, boosted vaccination is 97.4% (95% CI: 97.4, 97.4) effective, and a non-boosted vaccination is 90.9% (95% CI: 90.9, 90.9). Against COVID-19-related death, boosted vaccination yields a vaccine effectiveness (VE) of 91.7 (95% CI: 90.6, 92.7) and full vaccination yields a VE of 65.7% (95% CI: 61.9, 69.1). Looking into the different vaccines as boosters, AZD1222 is 95.2% (CI 95%: 92.7, 96.8) effective, BNT162b2 is 91.8% (CI 95%: 90.7, 92.8) effective and CoronaVac is 88.8% (CI 95%: 84.9, 91.7) effective against COVID-19 deaths. (4) Conclusions: Boosters are effective in increasing protection against COVID-19, including the Omicron variant. Given that the VE observed was lower, CoronaVac recipients are encouraged to take boosters due to its lower VE.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , Malaysia/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , ChAdOx1 nCoV-19 , SARS-CoV-2 , Vaccination
10.
Acta Trop ; 239: 106796, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36586174

ABSTRACT

It has been tested and proven that vaccination is still the best strategy to combat infectious diseases. However, to date, there are still no vaccines against human soil-transmitted helminthic diseases, despite their high prevalence globally, particularly in developing countries and rural areas with tropical climates and poor sanitation. The development of vaccines against helminths is riddled with obstacles. Helminths have a complex life cycle, multiple stages within the same host with stage-specific antigen expression, and the ability to regulate host immune reactions to evade the immune response. These elements contribute to the main challenge of helminthic vaccines: the identification of effective vaccine candidates. Therefore, this article reviews the current progress and potential future direction of soil-transmitted helminthic vaccines, particularly against Trichuris trichiura, Ascaris lumbricoides, Strongyloides stercoralis, Necator americanus and Ancylostoma duodenale. The study design employed was a systematic review, using qualitative meta-summary synthesis. Preclinical studies and clinical trials on the development of protein subunit vaccines against the five soil-transmitted helminths were searched on PubMed and Scopus. Effectiveness was indicated by a reduction in worm burden or larval output, an increase in specific IgG levels, or an increase in cytokine production. Our findings show that only the hookworm vaccine against N. americanus is in the clinical trial phase, while the rest is still in exploratory research and pre-clinical development phase.


Subject(s)
Helminthiasis , Hookworm Infections , Vaccines , Animals , Humans , Soil/parasitology , Hookworm Infections/epidemiology , Ascaris lumbricoides , Ancylostomatoidea , Necator americanus , Helminthiasis/prevention & control , Helminthiasis/epidemiology , Feces/parasitology
11.
Front Cell Dev Biol ; 10: 1005926, 2022.
Article in English | MEDLINE | ID: mdl-36407112

ABSTRACT

Over the past 2 decades, mesenchymal stem cells (MSCs) have attracted a lot of interest as a unique therapeutic approach for a variety of diseases. MSCs are capable of self-renewal and multilineage differentiation capacity, immunomodulatory, and anti-inflammatory properties allowing it to play a role in regenerative medicine. Furthermore, MSCs are low in tumorigenicity and immune privileged, which permits the use of allogeneic MSCs for therapies that eliminate the need to collect MSCs directly from patients. Induced pluripotent stem cells (iPSCs) can be generated from adult cells through gene reprogramming with ectopic expression of specific pluripotency factors. Advancement in iPS technology avoids the destruction of embryos to make pluripotent cells, making it free of ethical concerns. iPSCs can self-renew and develop into a plethora of specialized cells making it a useful resource for regenerative medicine as they may be created from any human source. MSCs have also been used to treat individuals infected with the SARS-CoV-2 virus. MSCs have undergone more clinical trials than iPSCs due to high tumorigenicity, which can trigger oncogenic transformation. In this review, we discussed the overview of mesenchymal stem cells and induced pluripotent stem cells. We briefly present therapeutic approaches and COVID-19-related diseases using MSCs and iPSCs.

12.
PeerJ ; 10: e13704, 2022.
Article in English | MEDLINE | ID: mdl-35979475

ABSTRACT

HIV-1 derived lentiviral vector is an efficient transporter for delivering desired genetic materials into the targeted cells among many viral vectors. Genetic material transduced by lentiviral vector is integrated into the cell genome to introduce new functions, repair defective cell metabolism, and stimulate certain cell functions. Various measures have been administered in different generations of lentiviral vector systems to reduce the vector's replicating capabilities. Despite numerous demonstrations of an excellent safety profile of integrative lentiviral vectors, the precautionary approach has prompted the development of integrase-deficient versions of these vectors. The generation of integrase-deficient lentiviral vectors by abrogating integrase activity in lentiviral vector systems reduces the rate of transgenes integration into host genomes. With this feature, the integrase-deficient lentiviral vector is advantageous for therapeutic implementation and widens its clinical applications. This short review delineates the biology of HIV-1-erived lentiviral vector, generation of integrase-deficient lentiviral vector, recent studies involving integrase-deficient lentiviral vectors, limitations, and prospects for neoteric clinical use.


Subject(s)
HIV-1 , Integrases , Integrases/genetics , Genetic Vectors/genetics , Transgenes , HIV-1/genetics , Genome
13.
Mol Biol Rep ; 49(11): 10593-10608, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35674877

ABSTRACT

BACKGROUND: Antibodies have proven to be remarkably successful for biomedical applications. They play important roles in epidemiology and medicine from diagnostics of diseases to therapeutics, treating diseases from incessant chronic diseases such as rheumatology to pandemic outbreaks. With no end in sight for the demand for antibody products, optimizations and new techniques must be expanded to accommodate this. METHODS AND RESULTS: This review discusses optimizations and techniques for antibody production through choice of discovery platforms, expression systems, cell culture mediums, and other strategies to increase expression yield. Each system has its own merits and demerits, and the strategy chosen is critical in addressing various biological aspects. CONCLUSIONS: There is still insufficient evidence to validate the efficacy of some of these techniques, and further research is needed to consolidate these industrial production systems. There is no doubt that more strategies, systems, and pipelines will contribute to enhance biopharmaceutical production.


Subject(s)
Antibodies , Proteins , Animals , Mammals
14.
Biomedicines ; 10(4)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35453554

ABSTRACT

The chimeric antigen receptor (CAR) plays a dynamic role in targeting tumour-associated antigens in cancer cells. This novel therapeutic discovery combines fragments of monoclonal antibodies with the signalling and co-stimulatory domains that have been modified to its current fourth generation. CAR has been widely implemented in T-cells and natural killer (NK) cells immunotherapy. The significant advancement in CAR technology is evident based on numerous ongoing clinical trials on CAR-T/-NK cells and successful CAR-related products such as Kymriah (Novartis) and Yescarta (Kite Pharma, Gilead). Another important cell-based therapy is the engineering of mesenchymal stem cells (MSC). Researchers have been exploring MSCs and their innate homing abilities to tumour sites and secretion cytokines that bridge both CAR and MSC technologies as a therapeutic agent. This combination allows for both therapies to overcome each one's flaw as an immunotherapy intervention. Herein, we have provided a concise review on the background of CAR and its applications in different cancers, as well as MSCs' unique ability as delivery vectors for cancer therapy and the possibility of enhancing the CAR-immune cells' activity. Hence, we have highlighted throughout this review the synergistic effects of both interventions.

15.
Front Immunol ; 13: 833715, 2022.
Article in English | MEDLINE | ID: mdl-35242137

ABSTRACT

2020 will be marked in history for the dreadful implications of the COVID-19 pandemic that shook the world globally. The pandemic has reshaped the normality of life and affected mankind in the aspects of mental and physical health, financial, economy, growth, and development. The focus shift to COVID-19 has indirectly impacted an existing air-borne disease, Tuberculosis. In addition to the decrease in TB diagnosis, the emergence of the TB/COVID-19 syndemic and its serious implications (possible reactivation of latent TB post-COVID-19, aggravation of an existing active TB condition, or escalation of the severity of a COVID-19 during TB-COVID-19 coinfection), serve as primary reasons to equally prioritize TB. On a different note, the valuable lessons learnt for the COVID-19 pandemic provide useful knowledge for enhancing TB diagnostics and therapeutics. In this review, the crucial need to focus on TB amid the COVID-19 pandemic has been discussed. Besides, a general comparison between COVID-19 and TB in the aspects of pathogenesis, diagnostics, symptoms, and treatment options with importance given to antibody therapy were presented. Lastly, the lessons learnt from the COVID-19 pandemic and how it is applicable to enhance the antibody-based immunotherapy for TB have been presented.


Subject(s)
Antibodies/therapeutic use , COVID-19/epidemiology , COVID-19/therapy , Coinfection/therapy , Tuberculosis/epidemiology , Tuberculosis/therapy , Antibodies/immunology , COVID-19/diagnosis , COVID-19/immunology , Coinfection/diagnosis , Coinfection/epidemiology , Coinfection/immunology , Humans , Immunotherapy , Mycobacterium tuberculosis , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , Tuberculosis/diagnosis , Tuberculosis/immunology
16.
Immunobiology ; 227(3): 152201, 2022 05.
Article in English | MEDLINE | ID: mdl-35272134

ABSTRACT

Cellular immunity is a critical factor determining the safety and efficacy of newly developed vaccines against Mycobacterium tuberculosis infection. Crosstalk between CD4+ and CD8+ T-lymphocytes plays central roles in perpetuating the cytotoxic killing to the infected cells for host clearance. Our study proposed a novel alternating MHC-class II restricted peptide vaccination strategy to enhance the antigen-specific CD8+ T-cell activity against alpha-crystalline heat-shock protein (HspX) in C57BL/6 mice. Alternating peptide vaccination significantly stimulated a prominent HspX-specific CD8+ T-cell response with elevated Th1 and Th17 responses, without interference from Tregs suppression. Heightened central and effector CD8 memory were apparent in mice receiving alternating peptide vaccine, indicating a persisting recall immunity against HspX antigen. It was unlikely for alternating peptide vaccine to cause dysregulation in CD8+ T-cells as shown by minimal expression of KLRG1, PD1, LAG3, and CTLA-4 markers. Strong cytotoxic T-lymphocyte (CTL) responses were demonstrated in mice administrated with alternating peptide vaccines, suggesting its capacity in executing killing effector function against targeted cells. In conclusion, our novel vaccination strategy delineated potential benefits of alternating MHC-II peptides to invigorate efficient cytotoxic CD8+ T-cell responses against HspX antigen. Such approach might be applicable to serve as alternative immunotherapy for latent tuberculosis infection in future.


Subject(s)
Antineoplastic Agents , Cancer Vaccines , Mycobacterium tuberculosis , Tuberculosis , Animals , CD8-Positive T-Lymphocytes , Heat-Shock Proteins , Mice , Mice, Inbred C57BL , Peptides , T-Lymphocytes, Cytotoxic , Tuberculosis/prevention & control , Vaccination , Vaccines, Subunit
17.
Medicina (Kaunas) ; 58(2)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35208514

ABSTRACT

Background and Objectives: Abnormal expressions of CD74 and human leukocyte antigen-DR alpha (HLA-DRA) have been reported in various cancers, though their roles in cervical cancer remain unclear. This study aimed to evaluate the gene and protein expressions of CD74 and HLA-DRA in the progression from normal cervix to precancerous cervical intraepithelial neoplasia (CIN) and finally to squamous cell carcinoma (SCC). Materials and Methods: The gene expression profiles of CD74 and HLA-DRA were determined in formalin-fixed paraffin-embedded tissues, with three samples each from normal cervixes, human papillomavirus type 16/18-positive, low-grade CIN (LGCIN), high-grade CIN (HGCIN), and squamous cell carcinoma (SCC) using Human Transcriptome Array 2.0. Immunohistochemical expression of the proteins was semi-quantitatively assessed in another cohort of tissue microarray samples comprising 7 normal cervix cases, 10 LGCIN, 10 HGCIN, and 95 SCC. Results: The transcriptomics profile and proteins' expression demonstrated similar trends of upregulation of CD74 and HLA-DRA from normal cervix to CIN and highest in SCC. There was a significant difference in both proteins' expression between the histological groups (p = 0.0001). CD74 and HLA-DRA expressions were significantly associated with CIN grade (p = 0.001 and p = 0.030, respectively) but not with the subjects' age or SCC stage. Further analysis revealed a positive correlation between CD74 and HLA-DRA proteins. Conclusions: CD74 appears to promote cervical carcinogenesis via oncogenic signalling mechanisms and may serve as a potential antitumour target. Additionally, the upregulation of HLA-DRA, often associated with stronger immunogenicity, could be a promising biomarker for developing immunotherapies.


Subject(s)
Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cervix Uteri/metabolism , Cervix Uteri/pathology , Female , HLA-DR alpha-Chains/genetics , HLA-DR alpha-Chains/metabolism , Humans , Uterine Cervical Neoplasms/pathology
18.
Biomedicines ; 10(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35052787

ABSTRACT

Lentiviral vectors (LVs) play an important role in gene therapy and have proven successful in clinical trials. LVs are capable of integrating specific genetic materials into the target cells and allow for long-term expression of the cDNA of interest. The use of non-integrating LVs (NILVs) reduces insertional mutagenesis and the risk of malignant cell transformation over integrating lentiviral vectors. NILVs enable transient expression or sustained episomal expression, especially in non-dividing cells. Important modifications have been made to the basic human immunodeficiency virus (HIV) structures to improve the safety and efficacy of LVs. NILV-aided transient expression has led to more pre-clinical studies on primary immunodeficiencies, cytotoxic cancer therapies, and hemoglobinopathies. Recently, the third generation of self-inactivating LVs was applied in clinical trials for recombinant protein production, vaccines, gene therapy, cell imaging, and induced pluripotent stem cell (iPSC) generation. This review discusses the basic lentiviral biology and the four systems used for generating NILV designs. Mutations or modifications in LVs and their safety are addressed with reference to pre-clinical studies. The detailed application of NILVs in promising pre-clinical studies is also discussed.

19.
Biotechnol Appl Biochem ; 69(1): 70-76, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33258152

ABSTRACT

Lymphatic filariasis is a neglected parasitic disease that affects millions in tropical and subtropical countries and is caused by Wuchereria and Brugia species. Specific and sensitive detection methods are essential in mapping infected areas where rapid tests are needed to cover underdeveloped and remote regions, which facilitates eliminating the disease as a public health problem. A few commercialized rapid tests based on antigen or antibody detection are available, but the former only detects infection by Wuchereria species and cross-reacts with nonlymphatic filaria, whereas antibody detection might provide positive results of previous infection. Here, we report the production of three different recombinant immunoglobulin gamma (IgG)1 antibodies based on scFvs previously generated via human antibody phage display technology, that is, anti-BmR1 clone 4, anti-BmXSP clone 5B, and anti-BmXSP clone 2H2. The scFv sequences were cloned into a pCMV-IgG1 vector, then transfected into a HEK293F cell line. The generated antibodies were found to be able to bind to their respective targets even at relatively low concentration. Conjugation of Fc to scFv induces binder stability and provides multiple labeling sites for probes and signaling molecules that can be used in rapid tests.


Subject(s)
Antigens, Helminth , Elephantiasis, Filarial , Elephantiasis, Filarial/diagnosis , Humans , Immunoglobulin G , Recombinant Proteins
20.
Int J Mol Sci ; 22(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34830303

ABSTRACT

The rapid mutation of the SARS-CoV-2 virus is now a major concern with no effective drugs and treatments. The severity of the disease is linked to the induction of a cytokine storm that promotes extensive inflammation in the lung, leading to many acute lung injuries, pulmonary edema, and eventually death. Mesenchymal stem cells (MSCs) might prove to be a treatment option as they have immunomodulation and regenerative properties. Clinical trials utilizing MSCs in treating acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) have provided a basis in treating post-COVID-19 patients. In this review, we discussed the effects of MSCs as an immunomodulator to reduce the severity and death in patients with COVID-19, including the usage of MSCs as an alternative regenerative therapy in post-COVID-19 patients. This review also includes the current clinical trials in utilizing MSCs and their potential future utilization for long-COVID treatments.


Subject(s)
COVID-19/complications , Immunomodulation/physiology , Mesenchymal Stem Cell Transplantation , Regeneration/physiology , COVID-19/pathology , COVID-19/therapy , COVID-19/virology , Humans , Lung/pathology , Lung/physiology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/therapy , SARS-CoV-2/isolation & purification , Post-Acute COVID-19 Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...