Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 40(4): 619-31, 2010 Nov 24.
Article in English | MEDLINE | ID: mdl-21055983

ABSTRACT

Genome integrity is jeopardized each time DNA replication forks stall or collapse. Here we report the identification of a complex composed of MMS22L (C6ORF167) and TONSL (NFKBIL2) that participates in the recovery from replication stress. MMS22L and TONSL are homologous to yeast Mms22 and plant Tonsoku/Brushy1, respectively. MMS22L-TONSL accumulates at regions of ssDNA associated with distressed replication forks or at processed DNA breaks, and its depletion results in high levels of endogenous DNA double-strand breaks caused by an inability to complete DNA synthesis after replication fork collapse. Moreover, cells depleted of MMS22L are highly sensitive to camptothecin, a topoisomerase I poison that impairs DNA replication progression. Finally, MMS22L and TONSL are necessary for the efficient formation of RAD51 foci after DNA damage, and their depletion impairs homologous recombination. These results indicate that MMS22L and TONSL are genome caretakers that stimulate the recombination-dependent repair of stalled or collapsed replication forks.


Subject(s)
DNA Replication , DNA-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , NF-kappa B/metabolism , Nuclear Proteins/metabolism , Recombination, Genetic , Stress, Physiological , Cell Survival , DNA Breaks, Double-Stranded , HeLa Cells , Humans , NF-kappa B/chemistry , Protein Binding , S Phase , Templates, Genetic
2.
BMC Cell Biol ; 9: 23, 2008 May 05.
Article in English | MEDLINE | ID: mdl-18457584

ABSTRACT

BACKGROUND: The fission yeast Schizosaccharomyces pombe is widely-used as a model organism for the study of a broad range of eukaryotic cellular processes such as cell cycle, genome stability and cell morphology. Despite the availability of extensive set of genetic, molecular biological, biochemical and cell biological tools for analysis of protein function in fission yeast, studies are often hampered by the lack of an effective method allowing for the rapid regulation of protein level or protein activity. RESULTS: In order to be able to regulate protein function, we have made use of a previous finding that the hormone binding domain of steroid receptors can be used as a regulatory cassette to subject the activity of heterologous proteins to hormonal regulation. The approach is based on fusing the protein of interest to the hormone binding domain (HBD) of the estrogen receptor (ER). The HBD tag will attract the Hsp90 complex, which can render the fusion protein inactive. Upon addition of estradiol the protein is quickly released from the Hsp90 complex and thereby activated. We have tagged and characterised the induction of activity of four different HBD-tagged proteins. Here we show that the tag provided the means to effectively regulate the activity of two of these proteins. CONCLUSION: The estradiol-regulatable hormone binding domain provides a means to regulate the function of some, though not all, fission yeast proteins. This system may result in very quick and reversible activation of the protein of interest. Therefore it will be a powerful tool and it will open experimental approaches in fission yeast that have previously not been possible. Since fission yeast is a widely-used model organism, this will be valuable in many areas of research.


Subject(s)
Gene Expression Regulation, Fungal , Receptors, Estrogen/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces/metabolism , Animals , Binding Sites , Cell Cycle/drug effects , Cell Cycle/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Cloning, Molecular , Cyclin B/genetics , Cyclin B/metabolism , DNA Replication/drug effects , DNA Replication/genetics , Estradiol/metabolism , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/pharmacology , Receptors, Estrogen/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Schizosaccharomyces pombe Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...