Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Methods ; 21(3): 488-500, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38361019

ABSTRACT

Protein-protein interactions (PPIs) drive cellular processes and responses to environmental cues, reflecting the cellular state. Here we develop Tapioca, an ensemble machine learning framework for studying global PPIs in dynamic contexts. Tapioca predicts de novo interactions by integrating mass spectrometry interactome data from thermal/ion denaturation or cofractionation workflows with protein properties and tissue-specific functional networks. Focusing on the thermal proximity coaggregation method, we improved the experimental workflow. Finely tuned thermal denaturation afforded increased throughput, while cell lysis optimization enhanced protein detection from different subcellular compartments. The Tapioca workflow was next leveraged to investigate viral infection dynamics. Temporal PPIs were characterized during the reactivation from latency of the oncogenic Kaposi's sarcoma-associated herpesvirus. Together with functional assays, NUCKS was identified as a proviral hub protein, and a broader role was uncovered by integrating PPI networks from alpha- and betaherpesvirus infections. Altogether, Tapioca provides a web-accessible platform for predicting PPIs in dynamic contexts.


Subject(s)
Herpesvirus 8, Human , Manihot , Sarcoma, Kaposi , Sarcoma, Kaposi/metabolism , Viral Proteins/metabolism , Manihot/metabolism , Virus Latency , Herpesvirus 8, Human/metabolism
2.
mSystems ; 8(6): e0051023, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37916830

ABSTRACT

IMPORTANCE: This study expands the growing understanding that protein acetylation is a highly regulated molecular toggle of protein function in both host anti-viral defense and viral replication. We describe a pro-viral role for the human enzyme SIRT2, showing that its deacetylase activity supports HCMV replication. By integrating quantitative proteomics, flow cytometry cell cycle assays, microscopy, and functional virology assays, we investigate the temporality of SIRT2 functions and substrates. We identify a pro-viral role for the SIRT2 deacetylase activity via regulation of CDK2 K6 acetylation and the G1-S cell cycle transition. These findings highlight a link between viral infection, protein acetylation, and cell cycle progression.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Humans , Cell Cycle/genetics , Cell Division , Cytomegalovirus/genetics , Cytomegalovirus Infections/genetics , Sirtuin 2/genetics
3.
Biomolecules ; 13(5)2023 05 20.
Article in English | MEDLINE | ID: mdl-37238738

ABSTRACT

The regulation of mitochondria structure and function is at the core of numerous viral infections. Acting in support of the host or of virus replication, mitochondria regulation facilitates control of energy metabolism, apoptosis, and immune signaling. Accumulating studies have pointed to post-translational modification (PTM) of mitochondrial proteins as a critical component of such regulatory mechanisms. Mitochondrial PTMs have been implicated in the pathology of several diseases and emerging evidence is starting to highlight essential roles in the context of viral infections. Here, we provide an overview of the growing arsenal of PTMs decorating mitochondrial proteins and their possible contribution to the infection-induced modulation of bioenergetics, apoptosis, and immune responses. We further consider links between PTM changes and mitochondrial structure remodeling, as well as the enzymatic and non-enzymatic mechanisms underlying mitochondrial PTM regulation. Finally, we highlight some of the methods, including mass spectrometry-based analyses, available for the identification, prioritization, and mechanistic interrogation of PTMs.


Subject(s)
Protein Processing, Post-Translational , Virus Diseases , Humans , Phosphorylation , Virus Diseases/metabolism , Mitochondrial Proteins/metabolism , Mitochondria/metabolism
4.
Cell Rep ; 39(6): 110810, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35545036

ABSTRACT

The presence and abundance of viral proteins within host cells are part of the essential signatures of the cellular stages of viral infections. However, methods that can comprehensively detect and quantify these proteins are still limited, particularly for viruses with large protein coding capacity. Here, we design and experimentally validate a mass spectrometry-based Targeted herpesviRUS proTEin Detection (TRUSTED) assay for monitoring human viruses representing the three Herpesviridae subfamilies-herpes simplex virus type 1, human cytomegalovirus (HCMV), and Kaposi sarcoma-associated herpesvirus. We demonstrate assay applicability for (1) capturing the temporal cascades of viral replication, (2) detecting proteins throughout a range of virus concentrations and in in vivo models of infection, (3) assessing the effects of clinical therapeutic agents and sirtuin-modulating compounds, (4) studies using different laboratory and clinical viral strains, and (5) discovering a role for carbamoyl phosphate synthetase 1 in supporting HCMV replication.


Subject(s)
Herpesvirus 1, Human , Herpesvirus 8, Human , Cytomegalovirus , Humans , Mass Spectrometry , Virus Replication
5.
Curr Opin Virol ; 52: 135-147, 2022 02.
Article in English | MEDLINE | ID: mdl-34923282

ABSTRACT

Human cytomegalovirus (HCMV) is a pervasive ß-herpesvirus that causes lifelong infection. The lytic replication cycle of HCMV is characterized by global organelle remodeling and dynamic virus-host interactions, both of which are necessary for productive HCMV replication. With the advent of new technologies for investigating protein-protein and protein-nucleic acid interactions, numerous critical interfaces between HCMV and host cells have been identified. Here, we review temporal and spatial virus-host interactions that support different stages of the HCMV replication cycle. Understanding how HCMV interacts with host cells during entry, replication, and assembly, as well as how it interfaces with host cell metabolism and immune responses promises to illuminate processes that underlie the biology of infection and the resulting pathologies.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Cytomegalovirus/physiology , Host Microbial Interactions , Host-Pathogen Interactions , Humans , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...