Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 2723, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31222014

ABSTRACT

Non-genetic drug resistance is increasingly recognised in various cancers. Molecular insights into this process are lacking and it is unknown whether stable non-genetic resistance can be overcome. Using single cell RNA-sequencing of paired drug naïve and resistant AML patient samples and cellular barcoding in a unique mouse model of non-genetic resistance, here we demonstrate that transcriptional plasticity drives stable epigenetic resistance. With a CRISPR-Cas9 screen we identify regulators of enhancer function as important modulators of the resistant cell state. We show that inhibition of Lsd1 (Kdm1a) is able to overcome stable epigenetic resistance by facilitating the binding of the pioneer factor, Pu.1 and cofactor, Irf8, to nucleate new enhancers that regulate the expression of key survival genes. This enhancer switching results in the re-distribution of transcriptional co-activators, including Brd4, and provides the opportunity to disable their activity and overcome epigenetic resistance. Together these findings highlight key principles to help counteract non-genetic drug resistance.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Leukemic/drug effects , Leukemia, Myeloid, Acute/drug therapy , Trans-Activators/antagonists & inhibitors , Animals , Antineoplastic Agents/therapeutic use , Bone Marrow/pathology , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Epigenesis, Genetic/drug effects , Female , HEK293 Cells , Humans , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred C57BL , Sequence Analysis, RNA , Single-Cell Analysis , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription, Genetic/drug effects , Treatment Outcome , Xenograft Model Antitumor Assays
2.
ACS Med Chem Lett ; 8(12): 1298-1303, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29259751

ABSTRACT

A number of diazepines are known to inhibit bromo- and extra-terminal domain (BET) proteins. Their BET inhibitory activity derives from the fusion of an acetyl-lysine mimetic heterocycle onto the diazepine framework. Herein we describe a straightforward, modular synthesis of novel 1,2,3-triazolobenzodiazepines and show that the 1,2,3-triazole acts as an effective acetyl-lysine mimetic heterocycle. Structure-based optimization of this series of compounds led to the development of potent BET bromodomain inhibitors with excellent activity against leukemic cells, concomitant with a reduction in c-MYC expression. These novel benzodiazepines therefore represent a promising class of therapeutic BET inhibitors.

3.
Science ; 356(6345): 1397-1401, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28619718

ABSTRACT

The success of new therapies hinges on our ability to understand their molecular and cellular mechanisms of action. We modified BET bromodomain inhibitors, an epigenetic-based therapy, to create functionally conserved compounds that are amenable to click chemistry and can be used as molecular probes in vitro and in vivo. We used click proteomics and click sequencing to explore the gene regulatory function of BRD4 (bromodomain containing protein 4) and the transcriptional changes induced by BET inhibitors. In our studies of mouse models of acute leukemia, we used high-resolution microscopy and flow cytometry to highlight the heterogeneity of drug activity within tumor cells located in different tissue compartments. We also demonstrate the differential distribution and effects of BET inhibitors in normal and malignant cells in vivo. This study provides a potential framework for the preclinical assessment of a wide range of drugs.


Subject(s)
Benzodiazepines/therapeutic use , Click Chemistry , Drug Delivery Systems , Epigenomics , Leukemia/drug therapy , Animals , Benzodiazepines/pharmacology , Cells, Cultured , Disease Models, Animal , Leukemia/pathology , Mice , Precision Medicine , Tissue Distribution , Transcription Factors/antagonists & inhibitors
4.
Nat Struct Mol Biol ; 23(7): 673-81, 2016 07.
Article in English | MEDLINE | ID: mdl-27294782

ABSTRACT

Targeted therapies against disruptor of telomeric silencing 1-like (DOT1L) and bromodomain-containing protein 4 (BRD4) are currently being evaluated in clinical trials. However, the mechanisms by which BRD4 and DOT1L regulate leukemogenic transcription programs remain unclear. Using quantitative proteomics, chemoproteomics and biochemical fractionation, we found that native BRD4 and DOT1L exist in separate protein complexes. Genetic disruption or small-molecule inhibition of BRD4 and DOT1L showed marked synergistic activity against MLL leukemia cell lines, primary human leukemia cells and mouse leukemia models. Mechanistically, we found a previously unrecognized functional collaboration between DOT1L and BRD4 that is especially important at highly transcribed genes in proximity to superenhancers. DOT1L, via dimethylated histone H3 K79, facilitates histone H4 acetylation, which in turn regulates the binding of BRD4 to chromatin. These data provide new insights into the regulation of transcription and specify a molecular framework for therapeutic intervention in this disease with poor prognosis.


Subject(s)
Gene Expression Regulation, Leukemic , Histones/genetics , Leukemia, Biphenotypic, Acute/genetics , Methyltransferases/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Acetylation , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cell Cycle Proteins , Cell Proliferation , Chromatin/chemistry , Chromatin/metabolism , Clinical Trials as Topic , Disease Models, Animal , Female , Histone-Lysine N-Methyltransferase , Histones/metabolism , Humans , Leukemia, Biphenotypic, Acute/metabolism , Leukemia, Biphenotypic, Acute/pathology , Male , Methyltransferases/antagonists & inhibitors , Methyltransferases/metabolism , Mice , Mice, Inbred C57BL , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Primary Cell Culture , Protein Binding , Proteomics/methods , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Transcription, Genetic
5.
Nature ; 525(7570): 538-42, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26367796

ABSTRACT

Bromodomain and extra terminal protein (BET) inhibitors are first-in-class targeted therapies that deliver a new therapeutic opportunity by directly targeting bromodomain proteins that bind acetylated chromatin marks. Early clinical trials have shown promise, especially in acute myeloid leukaemia, and therefore the evaluation of resistance mechanisms is crucial to optimize the clinical efficacy of these drugs. Here we use primary mouse haematopoietic stem and progenitor cells immortalized with the fusion protein MLL-AF9 to generate several single-cell clones that demonstrate resistance, in vitro and in vivo, to the prototypical BET inhibitor, I-BET. Resistance to I-BET confers cross-resistance to chemically distinct BET inhibitors such as JQ1, as well as resistance to genetic knockdown of BET proteins. Resistance is not mediated through increased drug efflux or metabolism, but is shown to emerge from leukaemia stem cells both ex vivo and in vivo. Chromatin-bound BRD4 is globally reduced in resistant cells, whereas the expression of key target genes such as Myc remains unaltered, highlighting the existence of alternative mechanisms to regulate transcription. We demonstrate that resistance to BET inhibitors, in human and mouse leukaemia cells, is in part a consequence of increased Wnt/ß-catenin signalling, and negative regulation of this pathway results in restoration of sensitivity to I-BET in vitro and in vivo. Together, these findings provide new insights into the biology of acute myeloid leukaemia, highlight potential therapeutic limitations of BET inhibitors, and identify strategies that may enhance the clinical utility of these unique targeted therapies.


Subject(s)
Benzodiazepines/pharmacology , Drug Resistance, Neoplasm/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Nuclear Proteins/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , Animals , Azepines/pharmacology , Cell Cycle Proteins , Cell Line, Tumor , Cells, Cultured , Chromatin/metabolism , Clone Cells/drug effects , Clone Cells/metabolism , Clone Cells/pathology , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic/drug effects , Genes, myc/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Molecular Targeted Therapy , Neoplastic Stem Cells/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Triazoles/pharmacology , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...