Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Cancer Ther ; 23(1): 92-105, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37748191

ABSTRACT

Despite the initial benefit from tyrosine kinase inhibitors (TKI) targeting oncogenic ALK and ROS1 gene fusions in non-small cell lung cancer, complete responses are rare and resistance ultimately emerges from residual tumor cells. Although several acquired resistance mechanisms have been reported at the time of disease progression, adaptative resistance mechanisms that contribute to residual diseases before the outgrowth of tumor cells with acquired resistance are less clear. For the patients who have progressed after TKI treatments, but do not demonstrate ALK/ROS1 kinase mutations, there is a lack of biomarkers to guide effective treatments. Herein, we found that phosphorylation of MIG6, encoded by the ERRFI1 gene, was downregulated by ALK/ROS1 inhibitors as were mRNA levels, thus potentiating EGFR activity to support cell survival as an adaptive resistance mechanism. MIG6 downregulation was sustained following chronic exposure to ALK/ROS1 inhibitors to support the establishment of acquired resistance. A higher ratio of EGFR to MIG6 expression was found in ALK TKI-treated and ALK TKI-resistant tumors and correlated with the poor responsiveness to ALK/ROS1 inhibition in patient-derived cell lines. Furthermore, we identified and validated a MIG6 EGFR-binding domain truncation mutation in mediating resistance to ROS1 inhibitors but sensitivity to EGFR inhibitors. A MIG6 deletion was also found in a patient after progressing to ROS1 inhibition. Collectively, this study identifies MIG6 as a novel regulator for EGFR-mediated adaptive and acquired resistance to ALK/ROS1 inhibitors and suggests EGFR to MIG6 ratios and MIG6-damaging alterations as biomarkers to predict responsiveness to ALK/ROS1 and EGFR inhibitors.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Anaplastic Lymphoma Kinase/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Protein-Tyrosine Kinases/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , ErbB Receptors , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/pharmacology , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Biomarkers , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor
2.
Thorac Cancer ; 14(33): 3259-3265, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37727007

ABSTRACT

BACKGROUND: The vast majority of patients with ROS1 positive non-small cell lung cancer (NSCLC) derive clinical benefit from currently approved ROS1 therapies, including crizotinib and entrectinib. However, a small proportion of patients treated with ROS1 inhibitors fail to derive any clinical benefit and demonstrate rapid disease progression. The biological mechanisms underpinning intrinsic resistance remain poorly understood for oncogene-driven cancers. METHODS: We generated a patient-derived cell line, CUTO33, from a ROS1 therapy naive patient with CD74-ROS1+ NSCLC, who ultimately did not respond to a ROS1 inhibitor. We evaluated a panel of ROS1+ patient-derived NSCLC cell lines and used cell-based assays to determine the mechanism of intrinsic resistance to ROS1 therapy. RESULTS: The CUTO33 cell line expressed the CD74-ROS1 gene fusion at the RNA and protein level. The ROS1 fusion protein was phosphorylated at baseline consistent with the known intrinsic activity of this oncogene. ROS1 phosphorylation could be inhibited using a wide array of ROS1 inhibitors, however these inhibitors did not block cell proliferation, confirming intrinsic resistance in this model and consistent with the patient's lack of response to a ROS1 inhibitor. CUTO33 expressed high levels of AXL, which has been associated with drug resistance. Combination of an AXL inhibitor or AXL knockdown with a ROS1 inhibitor partially reversed resistance. CONCLUSIONS: In summary, we demonstrate that AXL overexpression is a mechanism of intrinsic resistance to ROS1 inhibitors.


Subject(s)
Axl Receptor Tyrosine Kinase , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Oncogene Proteins, Fusion/metabolism , Axl Receptor Tyrosine Kinase/genetics , Axl Receptor Tyrosine Kinase/metabolism , /therapeutic use
3.
Thorac Cancer ; 13(21): 3032-3041, 2022 11.
Article in English | MEDLINE | ID: mdl-36101520

ABSTRACT

BACKGROUND: ROS1 tyrosine kinase inhibitors (TKIs) have demonstrated significant clinical benefit for ROS1+ NSCLC patients. However, TKI resistance inevitably develops through ROS1 kinase domain (KD) modification or another kinase driving bypass signaling. While multiple TKIs have been designed to target ROS1 KD mutations, less is known about bypass signaling in TKI-resistant ROS1+ lung cancers. METHODS: Utilizing a primary, patient-derived TPM3-ROS1 cell line (CUTO28), we derived an entrectinib-resistant line (CUTO28-ER). We evaluated proliferation and signaling responses to TKIs, and utilized RNA sequencing, whole exome sequencing, and fluorescence in situ hybridization to detect transcriptional, mutational, and copy number alterations, respectively. We substantiated in vitro findings using a CD74-ROS1 NSCLC patient's tumor samples. Last, we analyzed circulating tumor DNA (ctDNA) from ROS1+ NSCLC patients in the STARTRK-2 entrectinib trial to determine the prevalence of MET amplification. RESULTS: CUTO28-ER cells did not exhibit ROS1 KD mutations. MET TKIs inhibited proliferation and downstream signaling and MET transcription was elevated in CUTO28-ER cells. CUTO28-ER cells displayed extrachromosomal (ecDNA) MET amplification without MET activating mutations, exon 14 skipping, or fusions. The CD74-ROS1 patient samples illustrated MET amplification while receiving ROS1 TKI. Finally, two of 105 (1.9%) entrectinib-resistant ROS1+ NSCLC STARTRK-2 patients with ctDNA analysis at enrollment and disease progression displayed MET amplification. CONCLUSIONS: Treatment with ROS1-selective inhibitors may lead to MET-mediated resistance. The discovery of ecDNA MET amplification is noteworthy, as ecDNA is associated with more aggressive cancers. Following progression on ROS1-selective inhibitors, MET gene testing and treatments targeting MET should be explored to overcome MET-driven resistance.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Drug Resistance, Neoplasm/genetics , Gene Amplification , In Situ Hybridization, Fluorescence , Lung Neoplasms/pathology , Mutation , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Clinical Trials as Topic
4.
Kidney Int ; 94(6): 1127-1140, 2018 12.
Article in English | MEDLINE | ID: mdl-30249452

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent inherited nephropathy. To date, therapies alleviating the disease have largely focused on targeting abnormalities in renal epithelial cell signaling. ADPKD has many hallmarks of cancer, where targeting T cells has brought novel therapeutic interventions. However, little is known about the role and therapeutic potential of T cells in ADPKD. Here, we used an orthologous ADPKD model, Pkd1 p.R3277C (RC), to begin to define the role of T cells in disease progression. Using flow cytometry, we found progressive increases in renal CD8+ and CD4+ T cells, correlative with disease severity, but with selective activation of CD8+ T cells. By immunofluorescence, T cells specifically localized to cystic lesions and increased levels of T-cell recruiting chemokines (CXCL9/CXCL10) were detected by qPCR/in situ hybridization in the kidneys of mice, patients, and ADPKD epithelial cell lines. Importantly, immunodepletion of CD8+ T cells from one to three months in C57Bl/6 Pkd1RC/RC mice resulted in worsening of ADPKD pathology, decreased apoptosis, and increased proliferation compared to IgG-control, consistent with a reno-protective role of CD8+ T cells. Thus, our studies suggest a functional role for T cells, specifically CD8+ T cells, in ADPKD progression. Hence, targeting this pathway using immune-oncology agents may represent a novel therapeutic approach for ADPKD.


Subject(s)
Adaptive Immunity , CD8-Positive T-Lymphocytes/microbiology , Polycystic Kidney, Autosomal Dominant/immunology , Animals , Antineoplastic Agents, Immunological/therapeutic use , Cell Line , Disease Models, Animal , Disease Progression , Epithelial Cells , Female , Humans , Immunotherapy/methods , Kidney/cytology , Kidney/immunology , Kidney/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Polycystic Kidney, Autosomal Dominant/therapy , Signal Transduction/immunology , TRPP Cation Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...