Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Plant Physiol ; 292: 154147, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38096629

ABSTRACT

Due to the essential roles of K+ in plants, its up to 10% share in plant dry matter, and its mostly low availability in soil, effective potassium management poses a significant challenge for the plant. To enable efficient uptake and allocation of K+, numerous transporters and channels have evolved. During the last two decades, efforts have been made to characterise these transport proteins in Arabidopsis thaliana using knock-out mutants. Several KT/HAK/KUP transporters have been assigned specific functions. In this work, we contribute to an understanding of the role of AtKUP9 in plant adaptation to low K+ availability. We found that in vitro, atkup9 has reduced lateral root growth under low-K conditions, and root apical meristem proliferation is reduced in lateral roots compared with the primary root. We also documented AtKUP9 expression in both roots and shoots and showed that AtKUP9 expression is modulated during plant ontogeny and as a result of K+ deprivation. Altered carbohydrate allocation was also documented in atkup9. Mutants exported more soluble saccharides from leaves under K+ rich conditions and, under K+ deficiency, atkup9 accumulated more soluble saccharides in the shoots. A possible role of AtKUP9 in these processes is discussed.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Potassium/metabolism , Plants/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Membrane Transport Proteins/metabolism , Carbohydrates , Plant Roots/genetics , Plant Roots/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism
2.
Evolution ; 76(10): 2315-2331, 2022 10.
Article in English | MEDLINE | ID: mdl-35950324

ABSTRACT

Parallel evolution is common in nature and provides one of the most compelling examples of rapid environmental adaptation. In contrast to the recent burst of studies addressing genomic basis of parallel evolution, integrative studies linking genomic and phenotypic parallelism are scarce. Edaphic islands of toxic serpentine soils provide ideal systems for studying rapid parallel adaptation in plants, imposing strong, spatially replicated selection on recently diverged populations. We leveraged threefold independent serpentine adaptation of Arabidopsis arenosa and combined reciprocal transplants, ion uptake phenotyping, and available genome-wide polymorphisms to test if parallelism is manifested to a similar extent at both genomic and phenotypic levels. We found pervasive phenotypic parallelism in functional traits yet with varying magnitude of fitness differences that was congruent with neutral genetic differentiation between populations. Limited costs of serpentine adaptation suggest absence of soil-driven trade-offs. On the other hand, the genomic parallelism at the gene level was significant, although relatively minor. Therefore, the similarly modified phenotypes, for example, of ion uptake arose possibly by selection on different loci in similar functional pathways. In summary, we bring evidence for the important role of genetic redundancy in rapid adaptation involving traits with polygenic architecture.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Adaptation, Physiological/genetics , Phenotype , Soil , Genomics
3.
Front Plant Sci ; 12: 674010, 2021.
Article in English | MEDLINE | ID: mdl-34079573

ABSTRACT

Responsiveness to environmental conditions and developmental plasticity of root systems are crucial determinants of plant fitness. These processes are interconnected at a cellular level with cell wall properties and cell surface signaling, which involve arabinogalactan proteins (AGPs) as essential components. AGPs are cell-wall localized glycoproteins, often GPI-anchored, which participate in root functions at many levels. They are involved in cell expansion and differentiation, regulation of root growth, interactions with other organisms, and environmental response. Due to the complexity of cell wall functional and regulatory networks, and despite the large amount of experimental data, the exact molecular mechanisms of AGP-action are still largely unknown. This dynamically evolving field of root biology is summarized in the present review.

4.
Mycorrhiza ; 31(2): 231-241, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33492496

ABSTRACT

Many orchid species are threatened, while some disappear from their natural habitats without obvious reasons. Eutrophication has been suggested as a possible factor and nitrate, which is able to suppress non-symbiotic orchid seed germination even at very low concentrations, and could pose a serious threat for natural orchid populations. Early ontogenesis of all orchids entirely depends on orchid mycorrhizal symbiosis, and at this initial mycoheterotrophic stage, many terrestrial green orchids associate with polyphyletic fungal symbionts (i.e., mycobionts), collectively called "rhizoctonias." We asked whether these fungi might also have some non-nutritional roles, i.e., whether they might confer resistance to eutrophication. To test this hypothesis, we co-cultivated seeds of the terrestrial orchid Dactylorhiza majalis with five rhizoctonias (two Tulasnella, two Ceratobasidium and one Serendipita isolate) at various ecologically meaningful nitrate concentrations (0 to 100 mg/L). With the exception of one Tulasnella isolate, all mycobionts supported the growth of protocorms and formed orchid mycorrhiza, i.e., intracellular hyphal pelotons, in the protocorms. Nitrate suppressed asymbiotic, as well as symbiotic, seed germination in all but one fungal treatment; the seeds co-cultivated with one of the Ceratobasidium isolates were indeed insensitive to nitrate. We conclude that nitrates also negatively affect symbiotic orchid germination, depending on the available compatible mycobionts. Thus, eutrophication with nitrate may decrease the number of orchid mycobionts capable of supporting seed germination.


Subject(s)
Mycorrhizae , Orchidaceae , Germination , Nitrates , Seeds , Symbiosis
5.
Plants (Basel) ; 9(11)2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182498

ABSTRACT

Radiocaesium is a pollutant with a high risk for the environment, agricultural production, and human health. It is mobile in ecosystems and can be taken up by plants via potassium transporters. In this study, we focused on the role of potassium transporter AtKUP7 of the KT/HAK/KUP family in Cs+ and K+ uptake by plants and in plant tolerance to caesium toxicity. We detected that Arabidopsiskup7 mutant accumulates significantly lower amounts of 134Cs in the root (86%) and in the shoot (69%) compared to the wild-type. On the other hand ability of the mutant to grow on media with toxic (100 and 200 µM) concentrations of Cs+ was not changed; moreover its growth was not impaired on low K+. We further investigated another mutant line in AtKUP7 and found that the growth phenotype of the kup7 mutants in K+ deficient conditions is much milder than previously published. Also, their accumulation of K+ in shoots is hindered only by severe potassium shortage.

6.
Plants (Basel) ; 9(2)2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32041139

ABSTRACT

The exodermis is a common apoplastic barrier of the outer root cortex, with high environmentally-driven plasticity and a protective function. This study focused on the trade-off between the protective advantages provided by the exodermis and its disadvantageous reduction of cortical membrane surface area accessible by apoplastic route, thus limiting nutrient acquisition from the rhizosphere. We analysed the effect of nutrient deficiency (N, P, K, Mg, Ca, K, Fe) on exodermal and endodermal differentiation in maize. To differentiate systemic and localized effects, nutrient deficiencies were applied in three different approaches: to the root system as a whole, locally to discrete parts, or on one side of a single root. Our study showed that the establishment of the exodermis was enhanced in low-N and low-P plants, but delayed in low-K plants. The split-root cultivation proved that the effect is non-systemic, but locally coordinated for individual roots. Within a single root, localized deficiencies didn't result in an evenly differentiated exodermis, in contrast to other stress factors. The maturation of the endodermis responded in a similar way. In conclusion, N, P, and K deficiencies strongly modulated exodermal differentiation. The response was nutrient specific and integrated local signals of current nutrient availability from the rhizosphere.

7.
Plants (Basel) ; 8(10)2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31652570

ABSTRACT

Potassium is an essential macronutrient that has been partly overshadowed in root science by nitrogen and phosphorus. The current boom in potassium-related studies coincides with an emerging awareness of its importance in plant growth, metabolic functions, stress tolerance, and efficient agriculture. In this review, we summarized recent progress in understanding the role of K+ in root growth, development of root system architecture, cellular functions, and specific plant responses to K+ shortage. K+ transport is crucial for its physiological role. A wide range of K+ transport proteins has developed during evolution and acquired specific functions in plants. There is evidence linking K+ transport with cell expansion, membrane trafficking, auxin homeostasis, cell signaling, and phloem transport. This places K+ among important general regulatory factors of root growth. K+ is a rather mobile element in soil, so the absence of systemic and localized root growth response has been accepted. However, recent research confirms both systemic and localized growth response in Arabidopsis thaliana and highlights K+ uptake as a crucial mechanism for plant stress response. K+-related regulatory mechanisms, K+ transporters, K+ acquisition efficiency, and phenotyping for selection of K+ efficient plants/cultivars are highlighted in this review.

8.
Methods Mol Biol ; 1992: 1-26, 2019.
Article in English | MEDLINE | ID: mdl-31148028

ABSTRACT

There are various preparatory techniques for light microscopy permitting access to the inner structure of plant body and its development. Minute objects might be processed as whole-mount preparations, while voluminous ones should be separated into smaller pieces. Here we summarize some of the "classical" techniques to cut more voluminous objects into slices and access their inner structure either for simple anatomical analysis or for further processing (e.g., histochemistry, immunohistochemistry, in situ hybridization, enzyme histochemistry).


Subject(s)
Histocytological Preparation Techniques/methods , Microscopy/methods , Plants/ultrastructure , Histocytochemistry/methods , Microtomy/methods , Paraffin Embedding/methods , Plants/chemistry , Staining and Labeling/methods , Tissue Fixation/methods
9.
Ann Bot ; 123(4): 625-639, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30403767

ABSTRACT

BACKGROUND AND AIMS: Pyroloids, forest sub-shrubs of the Ericaceae family, are an important model for their mixotrophic nutrition, which mixes carbon from photosynthesis and from their mycorrhizal fungi. They have medical uses but are difficult to cultivate ex situ; in particular, their dust seeds contain undifferentiated, few-celled embryos, whose germination is normally fully supported by fungal partners. Their germination and early ontogenesis thus remain elusive. METHODS: An optimized in vitro cultivation system of five representatives from the subfamily Pyroloideae was developed to study the strength of seed dormancy and the effect of different media and conditions (including light, gibberellins and soluble saccharides) on germination. The obtained plants were analysed for morphological, anatomical and histochemical development. KEY RESULTS: Thanks to this novel cultivation method, which breaks dormancy and achieved up to 100 % germination, leafy shoots were obtained in vitro for representatives of all pyroloid genera (Moneses, Orthilia, Pyrola and Chimaphila). In all cases, the first post-germination stage is an undifferentiated structure, from which a root meristem later emerges, well before formation of an adventive shoot. CONCLUSIONS: This cultivation method can be used for further research or for ex situ conservation of pyroloid species. After strong seed dormancy is broken, the tiny globular embryo of pyroloids germinates into an intermediary zone, which is functionally convergent with the protocorm of other plants with dust seeds such as orchids. Like the orchid protocorm, this intermediary zone produces a single meristem: however, unlike orchids, which produce a shoot meristem, pyroloids first generate a root meristem.


Subject(s)
Botany/methods , Ericaceae/growth & development , Germination , Ericaceae/anatomy & histology , Ericaceae/metabolism , Pyrolaceae/anatomy & histology , Pyrolaceae/growth & development , Pyrolaceae/metabolism , Seeds/growth & development
10.
Environ Sci Pollut Res Int ; 24(25): 20705-20716, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28714046

ABSTRACT

Clarifying the connection between metal exposure and anatomical changes represents an important challenge for a better understanding of plant phytoextraction potential. A hydroponic screening experiment was carried out to evaluate the effects of combined interactions of Cd and Zn on mineral uptake (Mg, K, Ca, Na) and on the physiological and anatomical characteristics of Brassica napus L cv. Cadeli, Viking, and Navajo. Plants were exposed to 5 µM Cd (CdCl2), 10 µM Zn (ZnSO4), or both Cd + Zn, for 14 days. Cadmium exposure led to a significant reduction in root growth, shoot biomass, and chlorophyll content. After Cd-only and Cd + Zn treatment, primary root tips became thicker and pericycle cells were enlarged compared to the control and Zn-only treatment. No differences between metals were observed under UV excitation, where all treatments showed more intensive autofluorescence connected with lignin/suberin accumulation compared to control conditions. The highest concentrations of Cd and Zn were found in the roots of all tested plants, and translocation factors did not exceed the threshold of 1.0. The root mineral composition was not affected by any treatment. In the shoots, the Mg concentration slightly increased after Cd-only and Cd + Zn treatments, whereas Zn-only treatment caused a sharp decrease in Ca content. Slight increases in K were seen after the addition of Zn. Significantly higher concentrations of Na were induced by Cd- or Zn-only treatment.


Subject(s)
Brassica napus/drug effects , Cadmium/toxicity , Soil Pollutants/toxicity , Zinc/toxicity , Biodegradation, Environmental , Brassica napus/anatomy & histology , Brassica napus/physiology , Hydroponics , Plant Roots/anatomy & histology , Plant Roots/drug effects , Plant Roots/physiology
11.
Ann Bot ; 120(1): 71-85, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28605408

ABSTRACT

Background and Aims: Root absorptive characteristics rely on the presence of apoplastic barriers. However, little is known about the establishment of these barriers within a complex root system, particularly in a major portion of them - the lateral roots. In Zea mays L., the exodermis differentiates under the influence of growth conditions. Therefore, the species presents a suitable model to elucidate the cross-talk among environmental conditions, branching pattern and the maturation of barriers within a complex root system involved in the definition of the plant-soil interface. The study describes the extent to which lateral roots differentiate apoplastic barriers in response to changeable environmental conditions. Methods: The branching, permeability of the outer cell layers and differentiation of the endo- and exodermis were studied in primary roots and various laterals under different types of stress of agronomic importance (salinity, heavy metal toxicity, hypoxia, etc.). Histochemical methods, image analysis and apoplastic tracer assays were utilized. Key Results: The results show that the impact of growth conditions on the differentiation of both the endodermis and exodermis is modulated according to the type/diameter of the root. Fine laterals clearly represent that portion of a complex root system with a less advanced state of barrier differentiation, but with substantial ability to modify exodermis differentiation in response to environmental conditions. In addition, some degree of autonomy in exodermal establishment of Casparian bands (CBs) vs. suberin lamellae (SLs) was observed, as the absence of lignified exodermal CBs did not always fit with the lack of SLs. Conclusions: This study highlights the importance of lateral roots, and provides a first look into the developmental variations of apoplastic barriers within a complex root system. It emphasizes that branching and differentiation of barriers in fine laterals may substantially modulate the root system-rhizosphere interaction.


Subject(s)
Lipids/chemistry , Plant Epidermis/growth & development , Plant Roots/growth & development , Stress, Physiological , Zea mays/physiology , Plant Epidermis/chemistry , Soil
12.
Methods Mol Biol ; 1080: 1-23, 2014.
Article in English | MEDLINE | ID: mdl-24132415

ABSTRACT

There are various preparatory techniques for light microscopy permitting access to the inner structure of plant body and its development. Minute objects might be processed as whole-mount preparations, while voluminous ones should be separated into smaller pieces. Hereby we summarize some of the "classical" techniques to cut more voluminous objects into slices and access their inner structure either for simple anatomical analysis or for further processing (e.g., histochemistry, immunohistochemistry, in situ hybridization, enzyme histochemistry).


Subject(s)
Immunohistochemistry/methods , Microscopy , Plants/chemistry , Specimen Handling/methods , Microscopy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...